成型力学课件2Stress-Analysis.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《成型力学课件2Stress-Analysis.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 成型 力学 课件 Stress Analysis
- 资源描述:
-
1、材料成形力学材料成形力学(双语教学)(双语教学)2 Stress Analysis2.1 Specification of stress at a point2.1.1 Internal forces (in.f.)(内力)(内力)一点的应力状态一点的应力状态No external forcesInternal forces existExternal forces act.Mutual position of molecular changeDistances between them changeAdditional internal forces The additional force
2、s are what we are interested in and are called internal forces2.1.2 External forces (En.f.)(外力)(外力)External forcesAct on every particlesAct on contact surface Gravitational Magnetic Normal pressureFriction forcesIn the direction opposite to the moving direction of the body Convert:In.f.Ex.f.Section
3、methodBody forcesContact forces2.1.3 Stress at a point in a continuous body (连续体内一点的应力连续体内一点的应力)System of ex.f.A bodyIn equilibrium(外力系)(外力系)(处于平衡状态)(处于平衡状态)Body inter-sectioned by a section plane through pass point PUse section method:FPart A.Part B.(remove)FF:Resultant exerted by B on A,A in equil
4、ibriumF:Resultant exerted by A on B(remain)in equilibriumAround point P on section planeisolateElemental areaAResultant exerted by A on isAFAverage stress on is AFA(上的平均应力为 )AFAABPF1F2F3F4F5F6F7F8APBF5F6F7F8Fwhen 0A0rAFdFAdAlim(contract around point P)(Force/(lngth)2)Intensity of internal force at t
5、he point P on the section plane,in.f./per unit area.r:Stress at the point P on the section plane For another section plane passing through the point P,we have another stress at the same point.In general,0r0rrThe stress state at a point can be considered defined if the stress on any section plane pas
6、sing through the point have been determined.(如果过一点任意截面上的应力已知,则可以认为过该点的应力状态便确定了。)(如果过一点任意截面上的应力已知,则可以认为过该点的应力状态便确定了。)2.1.4 Stress components (应力分量应力分量)Fr,and also,needs not be normal to the section plane.Fresolve(分解)sFNF:Normal to the reference plane:tangential to the reference planeNFsFFAPNormal str
7、ess(正应力正应力)NNA0FdFAdAlim(Normal to the section plane)Positive:elongationNegative:compressionShear stress(剪应力剪应力)ssA0FdFAdAlim(tangential to the section plane)Change in shape(改变物体的形状)(改变物体的形状)Nine components and stress tensor(九个分量和应力张量九个分量和应力张量)Coordinate system:OxyzTake an infinite small element fro
8、m the body around point P.Six section planes parallel to the coordinate planesParallel-piped(平行六面体平行六面体)Three orthogonal planes:xoy,yoz and zoxOn the face parallel to the plane xoy(normal direction is oz)Normal stress:zzz(In the oz direction)Shear stress:zresolvezxzyAlong ox directionAlong oy direct
9、ionDouble subscript notationFirst subscript:The direction of the normal to the plane on which the stress acts.second subscript:The sense of the stress.zyxOzzxzyxxyxzyyxyzyozzoxxoyoxoyozyyxxzzxyyxxzyzzyzxplanenormal directionSense of stressox oy oz Another specified coordinate systemox y z Another co
10、mponent systemy y x x z z x y y x x z y z z y z x They can be transformedCoordinate systeminfinitecomponent systeminfiniteStress tensorDetermine the stress state at the pointExpression of stress tensor(matrix of tensor)应力张量的表示方法(张量的矩阵形式)应力张量的表示方法(张量的矩阵形式)xxxyxzyxyyyzzxzyzzxxyxzyxyyzzxzyzxxxyxzyxyyyz
11、zxzyzz(,)iji jx y zRowAct on the same plane,but in the different direction Columm Act on the different plane,but in the same direction 1.The nine stress components constitute a unity which is not separable.九个应力分量构成一个不可分隔的统一体九个应力分量构成一个不可分隔的统一体2.The stress components depend on the choice of the coordi
12、nate system.应力分量取决于坐标系的选择应力分量取决于坐标系的选择3.The stress components can be transformed when referring to different coordinate system.不同的坐标系之间应力分量可以不同的坐标系之间应力分量可以相互转换相互转换4.The stress components can constitute stress invariants independent of the choice of the coordinate system.应力分量应力分量可以构成应力不变量,该应力不变量与坐标系的
13、选择无关可以构成应力不变量,该应力不变量与坐标系的选择无关5.It is a symmetric tensor.应力分量是对称张量应力分量是对称张量Properties of stress tensor 应力张量的性质应力张量的性质2.2 Differential equation of equilibrium in the neighbour-hood of a pointxzyxzyABCDEFGO2.2.1 Force equilibrium (力平衡力平衡)xxyxzyyxyzzzxzyTake an element using section method.Analyses the
14、stresses on the face of the element.Stress components are the continuous function of the Cartesian coordinate.0,ijijx y z(力平衡微分方程)(力平衡微分方程),Aijijxx yy zzAijExpand into Taylors series:,ijijijijijxx yy zzx y zxyzxyzNeglect the terms in higher powers of xyzand,ijijijijijxx yy zzx y zxyzxyzAt the point
15、A(O A).,xyzincremet:,ijijBijijijxx yy zx y zxyxyAt the point B(O B).,xyincremet:xzyxzyABCDEFGOAt the point G(O G).xincremet:,ijGijijijxx y zx y zxxxzyxzyABCDEFGOxxyxzyyxyzzzxzyxxxxxyxyxxxzxzxxyyyyyxyxyyy zy zyyzzzzzxzxzzzyzyzzxzyxzyABCDEFGO0X Consider that the stress on each face are uniform(infinit
16、esimal)000XYZThe element is in equilibriumxxxxxy zx zxzxzx yz 0yxxxzxxyzxzyxzyABCDEFGOxxyxzyyxyzzzxzyxxxxxyxyxxxzxzxxyyyyyxyxyyy zy zyyzzzzzxzxzzzyzyzzxxy z yxyxyx zy yxx z yxx y 00yxxxzxxyz0 xyyyzyxyz0yzxzzzxyz0ijixBy means of tensor notation:j:is free subscript,it appears only one time in one term
17、 and is the same in all terms,it is replaced by x,y and z cyclicly in different eqs.i:is dummy subscript,it appears twice in one term and it is considered as the sum of three terms,in which the sub is replaced by x,y and z cyclicly.0ijix0 xjyjzjxyzxxx,jx0yxxxzxxyz,jy0 xyyyzyxyz,jz0yzxzzzxyziixxyyzzi
18、ij jSldummy,;jx y ziix xiy yiz zSlll,ixxxx xxy yxz zSlllyyx xyy yyz zSlll,iyzzx xzy yzz zSlll,iz2.2.2 Couple equilibrium (力矩平衡方程力矩平衡方程)Consider the moment about the axes passing through point P and parallel to Ox,Oy and Oz Neglect body forces and inertia forces.Resultant couple about the three axes:
19、000 xyzMMM0 xM yzyzyyzyzyzzAfter neglecting the quantities of the fourth order and simplifyingyzzyx z 2yyz2yx y 2zzy2z0 xzyxzyABCDEFGOzyyxyxyyzyzyzzyzx z x y Similarly:0yM xzzx0zM xyyxTherefore:ijjiEquality of shear stress(切应力互等)(切应力互等)From above analysis we got conclusion that the stress tensor is
20、a symmetric tensor.Therefore,nine components become six components.所以,应力张量是对称张量,所以,应力张量是对称张量,9个分量简化为个分量简化为6个分量。个分量。2.3 Three-dimensional stress analysis(important feature of tensor)2.3.1 Resultant stress on an oblique plane inclined to three Cartesian axesTake an element using the method of sections
21、Intersected byThree Cartesian planeTetrahedron OABC(四面体四面体)xzyOABCxxzxyyyzyxzzxzyRSnSsSzSxSySlmnRSzSySxS222RxyzSSSSAn oblique plane ABC(三维应力分析)(三维应力分析)(与三个坐标轴相倾斜的斜面上的和应力)(与三个坐标轴相倾斜的斜面上的和应力)Determine according to on three Cartesian planes:RSijplaneareaoxoyozOBClxxxyxzOACmyxyyyzOABnzxzyzzABC1SxSySzOAB
22、Cin equilibrium000XYZxxxyxzxSlmnFrom first column of the table yxyyyzySlmnFrom second column of the tablezxzyzzzSlmnFrom third column of the tablenmlllllzyxiiijjlS jxj xyj yzj zxjyjzjSllllmnfrom sub.j=x xxxyxzxSlmn j=y yxyyyzySlmnj=z zxzyzzzSlmn222RxyzSSSSijilis knownis knownSj is known SRTherefore,
23、if the stresses on three orthogonal Cartesian planes are known,the stresses on any oblique plane can be determined.ij can be transformed ji 2.3.2 Normal stresses on the oblique plane(斜面上的正应力)(斜面上的正应力)SRON.prozON.proyON.proxON.proRSSSSnxxxyxzyxyyyzzxzyzzSlmn llmn mlmn n2222xyzxyyzzxlmnlmmnnl Sn norma
24、l component,is coincide with ON Ss shear component resolve2.3.3 shear stresses on the oblique plane(斜面上的剪应力)(斜面上的剪应力)222snRSSS 22sRnSSS2.3.4 Stresses boundary conditions(应力边界条件)(应力边界条件)Relations between the distribution load on the body surface and stresses within the body at the same boundary point
25、 are the stress boundary condition.(所谓应力边界条件是指物体表面上的应力分布与同一边界处物体内部应力(所谓应力边界条件是指物体表面上的应力分布与同一边界处物体内部应力之间的关系。)之间的关系。)Body surface:inclined,normal ON(direction cosines:l,m,n)Distribution load p px(ox),py(oy),pz(oz)jij iplnmlpzxyxxxxnmlpzyyyxyynmlpzzyzxzz0yxxxzxxyz0 xyyyzyxyz0yzxzzzxyz0ijixBy means of t
展开阅读全文