大数据分析存储解决方案课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《大数据分析存储解决方案课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 分析 存储 解决方案 课件
- 资源描述:
-
1、Page 1从企业数据向大数据的扩展Traditional ApproachStructured,analytical,logicalSystems of RecordNew ApproachCreative,holistic thought,intuitionSystems Of EngagementMultimediaSystems of Insight Enterprise Integrationand Context AccumulationStructuredRepeatableLinearUnstructuredExploratoryDynamicData WarehouseWeb
2、 LogsSocial DataText Data:emailsSensor data:imagesRFIDInternal App DataTransaction DataMainframe DataOLTP System DataHadoop andStreamsTraditional SourcesNew SourcesERP data具备洞悉能力的系统Systems of InsightPage 2在可靠和安全可靠和安全的环境中处理关键业务应用存取和处理存取和处理海量数据包括结构化和非结构化数据速度及时响应随时可能出现的商业机会,这就需要灵活、实时性的基础架构The dynamics
3、of SoR and SoE:通过负载及资源部署的优化,来增强灵活性和效益 通过采用包括基于开放标准的技术等新技术来改善IT economicsSystem of Record(SoR)Systems of Engagement(SoE)对对的决策的决策对对的地方的地方对对的的时间时间点点Big Data&AnalyticsPage 3IBM Big Data&Analytics InfrastructureData Zone Application Zone Page 44Smart MeteringGrid Operations电网管理电网管理Field Service外勤现场服务外勤现场
4、服务Resource Planning资源规划资源规划Customer Service/Customer Operations实现真正的有效的法规遵从及时发现能源损耗问题、以及偷电和欺诈行为提高客户满意度电量使用预测更为精确电网运维优化减少停电次数和时间法法规规遵从遵从Page 5数据分析的高可用性,以确保随时了解用户喜好跨应用的TB级的数据需求 通用虚拟化存储平台实时收集、存储并分析数据,最快可达 50,000 data points/sec历史用电状态数据的复杂查询处理数据在加载到数据仓库前的清洗、验证,这些数据可能来自很多的用户、收费系统或断电保护系统关系掌控构建和维护电网的唯一试图对整
5、个企业的结构化和非结构化数据t做全局导览Navigation,从中发现Discover价值分析用户用电情况,侦测偷电、改表等行为预测哪些用户适合于哪些分时时段电价或需求/响应服务分时时段电价的实时定价 或 提供及时的需求/响应服务Page 6IBM Big Data&Analytics Reference ArchitectureBig Data Platform CapabilitiesInformation IngestReal-time AnalyticsWarehouse&Data MartsAnalytic AppliancesAll Data SourcesAdvanced Ana
6、lytics/New InsightsNew/Enhanced ApplicationsCognitive认知认知Learn Dynamically?Prescriptive 规范规范Best Outcomes?Predictive预测预测What Could Happen?Descriptive描述描述What Has Happened?Exploration and DiscoveryWhat Do You Have?Streaming DataText DataApplications DataTime SeriesGeo SpatialRelationalSocial NetworkV
7、ideo&ImageAutomated ProcessCase ManagementAnalytic ApplicationsWatsonCloud ServicesISV SolutionsAlertsPage 7New Infrastructure Leverages Data TypesData inMotionData atRestData inMany FormsInformation Ingestion and Operational Information Decision ManagementBI and Predictive AnalyticsNavigation and D
8、iscoveryIntelligenceAnalysis Raw Data Structured Data Text Analytics Data Mining Entity Analytics Machine LearningLanding Area,Analytics Zone and ArchiveVideo/AudioNetwork/SensorEntity AnalyticsPredictiveReal-time AnalyticsExploration,Integrated Warehouse,and Mart ZonesDiscoveryDeep ReflectionOperat
9、ionalPredictive Stream Processing Data Integration Master Data StreamsInformation Governance,Security and Business Continuity BigInsightsStreamsWarehouse Copyright IBM Corporation 2014Page 9InfoSphere BigInsights Hadoop-based 低延迟分析,针对多样化的、海量静态数据Data-At-RestNetezza High Capacity Appliance基于结构化数据的可查询归
10、档Netezza 1000基于结构化数据的BI+定制化分析 DataSmart Analytics System基于结构化数据的运营分析Informix TimeseriesTime-structured analyticsInfoSphere Warehouse基于结构化数据的大容量数据分析InfoSphere Streams低延迟流数据分析Velocity,Variety&VolumeData-In-MotionMPP Data WarehouseStream ComputingInformation IntegrationHadoopInfoSphere Information Serv
11、er海量数据集成和转化Apache Hadoop:跨服务器集群的大数据集分布式处理开放系统框架,采用的是一种简单化编程模型IBM Big Data Platform大数据平台大数据平台Page 10 What:一种开源软件,将数据计算分布到整个集群的常见商用服务器和存储上 Why:传统的计算架构是一种沿纵向扩展模式,通过更快的SAN、大容量内存和多级缓存将数据加载到CPU上,成本比较高。What:Hadoop 把大数据集合拆分区划为小数据集合,再把小数据集合分发到多台普通服务器上,是一种横向扩展模式。Why:Scalable,Flexible,Cost Effective,Fault Tole
12、rent Components:Map Reduce,HDFSWhat is Hadoop?Page 11NameNode(Metadata store)NodesHDFS ClusterOperating SystemNodesElastic Storage-SNC ClusterKernel LevelIBM Value for Hadoop!HDFS 把数据分散存储在多个存储节点Node上HDFS 设计时就假设存储节点有失效的可能,所以HDFS会把一份数据复制3份以上,分散存储在多个节点上,从而实现系统整体上的可靠性HDFS文件系统是由服务器节点集群组成的,每台服务器依照HDFS的特有b
13、lock协议支持网络化block 数据HDFS Name Node 有发生单点故障的危险IBM 在改善文件系统的性能同时消除了单点故障 Elastic Storage-SNC(available as beta code)Hadoop 说明说明,Map Reduce,HDFSPage 12What does it look like?Page 13典型典型Hadoop存储的存储的Pain Points在选择HDFS的组件(如软件、服务器、网络和存储等)时很难选对对在从测试环境迁移到生产环境时,需要做的调优和调整工作太繁复了长期持续不断的运维保障过于繁重,比如老要更换失效组件(尤其是硬盘),这使
14、得保证期望的SLA非常难CPU 和存储去耦o本来用户的CPU和内存已经满足计算需求,但为了存储容量需要安装更多的硬盘不得不买更多的、不必要的CPU和内存Storage options available have clear gapso本地存储的利用率低(25%),每次需要扩容的时候就要添加更多的服务器,而一旦硬盘失效后需要重建,服务器越多,失效的几率越高,性能也就越差Page 14传统的 Hadoop 集群使用的是服务器内置硬盘存储。如果用作测试或科学研究还好,可作为业务运行的存储就要采用企业存储Hadoop 集群要负责数据保护和复制l重建(就是copy)失效的数据集到不同节点上 严重影响C
15、PU性能,无法实现企业级的RASlReplicate data 问题同上l扩展的时候同时增加处理器/网络/存储,无法做到物尽其用(no way to separate these 3 even if excess capacity existing in one(e.g.Needed more storage but had to add Compute and Network))使用外部存储可以将存储负载和Hadoop计算节点分离,同时还获得了企业存储的好处。lSell the value of XIV,V7000,SVC,etc.用户一般会随Hadoop File System部署;采用E
16、lastic Storage 可以有很多好处Page 15数据加速数据加速lExperience the instant results that come from IBM FlashSystemlDrive as much as 45X faster analytics results on certain workloads数据负载的多样性和灵活性数据负载的多样性和灵活性lXIV delivers predictable performance that scales linearly without hotspots delivering insights from analytics
17、 faster with tuning-free data distributionlScale-out,parallel processing of Elastic Storage software and integration with FlashSystem dramatically accelerates performance of Analytics clusters lVirtual Storage Center with SVC automatically optimizes data warehouse performance and cost across Flash a
18、nd DiskMainframe Data EnvironmentslIntegration with DB2&specialty analytics“engines”leveraging DS8870 delivers 4x reduction in batch times with new High Performance Flash EnclosureslHigh speed encryption on every drive type secures data数据保护和保留数据保护和保留 lLTFS EE w/tape provides reduced TCO by up to 90%
19、over disk for long term retention of data at rest with a large open format tape repositorylReduce the amount of data to be stored by up to 25 times with ProtecTIER de-duplication 12x 更快更快IBM FlashSystem increased SPLUNK&SAS application efficiency to perform business analytics20 x 改善改善 in actionable
20、supply chain analytics,4x reduction in batch times,virtualization for plug&play6x 时间节时间节省省“GPFS allows us to move the metadata from the disk to the FlashSystem online.Once we did that,the backups were reduced down to about an hour.”2 hrs becomes2 minutes失效切换时间大幅缩短Mapping Characteristics to IBM Stora
21、ge Products Page 16Storage Infrastructure 需求需求适用于所有的5种应用场景 Optimized Multi-TemperatureWarehouse优化的多级存储库优化的多级存储库 oAll FlashFlashSystemoHybridDS8000 EasyTierXIV+SSD CachingStorwize EasyTierFlashSystem Solution(VSC+FlashSystem)oPureSystemsPureFlex(XIV or Storwize w/EasyTier)PureData for Transactions(St
22、orwize)PureData for Analytics(Netezza)Page 17Midrange&EntryTier 0 AccelerationEnterpriseOfferingsXIVzEnterprise Solutions for Analytics with DS8000PureData System forOperational Analytics with StorwizePureFlex Systemwith StorwizeDS8000Smart Analytics Systems with DS3xxxStorwizefamilyFlashSystemfamil
23、yIBM Smarter Storage 的设计就是支持大数据分析的设计就是支持大数据分析高效和优化数据基础架构高效和优化数据基础架构Page 18IBM FlashSystem的的 极速性能极速性能 让实时业务决策成为可能让实时业务决策成为可能适合于模块化数据存储结构的适合于模块化数据存储结构的Hadoop系统。某些或所有数据可系统。某些或所有数据可以保存到以保存到Flash闪存上,其他可以保存到闪存上,其他可以保存到XIVPage 19IBM XIV 的的高性能高性能无须人工干预配置,且适用于各无须人工干预配置,且适用于各种各样的存储负载种各样的存储负载IBM XIV 的的效率效率 高的异
24、乎寻常,而且简单性业内最高,内高的异乎寻常,而且简单性业内最高,内置友好界面置友好界面IBM XIV 的的弹性弹性是企业级的,完全保证了数据的可用性是企业级的,完全保证了数据的可用性和业务连续性和业务连续性Page 20 可扩展的网格存储架构 任意时间支持任意读写负载 板上的闪存Flash 精致的数据分布 无双的磁盘重建时间 企业级的可用性 简单的规划、供给和灵活性 上线后零维护 零调优“XIV最吸引我们的地方就是其超强的性能 we正是由于XIV为我们的精细复杂的分析应用提供了一致的高性能,使得我们能够为我们的用户带来更多的价值。”Page 21 大规模并行计算 保持持续地最佳性能 Balan
展开阅读全文