最新机器人学第7章机器人控制课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新机器人学第7章机器人控制课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 机器人学 机器人 控制 课件
- 资源描述:
-
1、7.1 引言引言(Introduction)前几章,我们借助齐次变换阐述了对于包括机械手在内的任何物体的位置和姿态的描述方法。研究了机械手的运动学,建立了机械手关节坐标和与直角坐标的位置和速度之间的关系,推导了机械手的动力学方程。本章,我们要根据动力学方程来考虑机械手的控制问题,由于任何机械手的实际控制都是通过对各个关节的协调控制来实现的,因此,必须对每一个关节进行有效的控制。7.3 机器人的位置控制 位置控制是在预先指定的坐标系上,对机器人末端执行器(end effector)的位置和姿态(方向)的控制。如图所示,末端执行器的位置和姿态是在三维空间描述的,包括三个平移分量和三个旋转分量,它们
2、分别表示末端执行器坐标在参考坐标中的空间位置和方向(姿态)。因此,必须给它指定一个参考坐标,原则上这个参考坐标可以任意设置,但为了规范化和简化计算,通常以机器人的基坐标作为参考坐标。机器人的基坐标的设置也不尽相同,如日本的MovemasterEx系列机器人,它们的基坐标都设置在腰关节上,而美国的Stanford机器人和Unimation公司出产的PUM系列机器人则是以肩关节坐标作为机器人的基坐标的。end effectorXXYYZZ图 机器人操作手O 机器人的位置控制主要有直角坐标和关节坐标两种控制方式。直角坐标位置控制:是对机器人末端执行器坐标在参考坐标中的位置和姿态的控制。通常其空间位置
3、主要由腰关节、肩关节和肘关节确定,而姿态(方向)由腕关节的两个或三个自由度确定。通过解逆运动方程,求出对应直角坐标位姿的各关节位移量,然后驱动伺服结构使末端执行器到达指定的目标位置和姿态。解逆运动程Xd d关节位控制PID光电码盘机器人操作手XddibieiX 由图可知,通用机器人是一个半闭环控制机构,即关节坐标采用闭环控制方式,由光电码盘提供各关节角位移实际值的反馈信号bi。直角坐标采用开环控制方式,由直角坐标期望值Xd解逆运动方程,获得各关节位移的期望值di,作为各关节控制器的参考输入,它与光电码盘检测的关节角位移bi比较后获得关节角位移的偏差ei,由偏差控制机器人操作手各关节伺服机构(通
4、常采用PID方式),使机械手末端执行器到达预定的位置和姿态。直角坐标位置采用开环控制的主要原因是目前尚无有效准确获取(检测)末端执行器位置和姿态的手段。但由于目前采用计算机求解逆运动方程的方法比较成熟,所以控制精度还是很高的。如美国Unimation PUMA系列机器人 CINCINNATI-T3系列机器人和Stanford机器人,其直角坐标位置重复定位精度达到0.1mm。日本三菱公司的RM101和 MovemasterEX机器人重复定位精度为0.3mm,而坐标型高精度机器人Delta和Adapt机器人重复定位精度甚至达到0.01mm。(注意:重复定位精度不是轨迹控制精度,后者精度要低得多)。
5、应该指出的是目前通用工业机器人位置控制是基于运动学的控制而非动力学控制。只适用于运动速度和加速度较小的应用场所。对于快速运动,负载变化大和要求力控的机器人还必须考虑其动力学行为。关节坐标位置控制:直接输入关节位移给定值,控制伺服机构。7.4 7.4 二阶线性系统控制规律的分解二阶线性系统控制规律的分解 机器人系统可以简化为一个带有驱动器的质量-弹簧-阻尼系统,系统运动方程为:fkxxbxm 位置控制问题就是建立一个合适的控制器,使物体在驱动力的作用下,即使存在随机干扰力,也能使物体始终在预期位置上。用 表示控制系统的位置和速度增益,适当地选择控制系统的增益可以得到所期望的任意二阶系统的品质。通
6、常,系统具有指定的刚度k,这时所选的增益应使系统具有临界阻尼b。vpkk、00)()(xkxbxmxkkxkbxmkxxbxmxkxkfpvvp 轨迹跟踪控制 如果要求受控物体能跟踪指定的目标轨迹,即物体沿着一条充分光滑的轨迹函数xd(t)运动,伺服误差e=xd-x。那么,轨迹跟踪的位置控制规律可选为:ekekxfpvd 将上述控制规律与无阻尼、无刚度的单位质量系统运动方程式联立得到系统运动的误差方程为:0ekekeekekxxpvpvd 可以通过适当选择kp和kv的值,很容易地确定系统对于误差的抑制特性,当kv2=4kp时,这个二阶系统处于临界阻尼状态,没有超调。下图所示的是控制只有一个自由
7、度的单位质量系统轨迹跟踪位置控制器框图:控制规律的分解控制规律的分解 采用控制规律分解的方法,将系统控制器分解成两个部分基于模型控制部分和伺服控制部分。结果使特定的受控系统参数m、b、k仅出现在基于模型控制部分,而伺服控制部分与这些参数无关。fxkxxbmfkxxbxm 原系统在基于上述模型的控制规律后,完全等效于在新输入f作用下的单位质量系统。采用前面单位质量系统的轨迹跟踪控制规律,确定控制增益十分简单,并与系统参数无关。pvpvpvdkkekekeekekxf20 7.5 单关节机器人的建模与控制)()()()()()()()()(tktetiktfJttedttdiLtiRtUmbbaa
8、meffmeffbaaaaa 对以上各式进行拉普拉斯变换,并忽略La的影响,单关节控制系统所加电压与关节位移的传函如下:)()()(baeffaeffaaakkfRJsRsnksUs1.单关节的位置和速度控制位置控制输入信号:nttkntektULdppa)()()()(系统的闭环传函:effabaeffabaeffaeffapadLLJRkkJRkkJRssJRkkss/)(/)(2)(传函表明,单关节位置控制是二阶系统,为改善系统的动态性能,减少静态误差,可以加大位置反馈增益kp和增加阻尼,下面再引入位置误差的导数作为反馈信号。位置和速度控制信号:ntektektUvpa)()()(位置和
9、速度控制的框图:其闭环传函:pavabaeffaeffapavadLLkkkkkkfRsJRskkskkss)()(2)(当有重力负载以及连杆变形作用时,操作臂受到D(s)的影响2.位置和速度反馈增益的确定位置和速度反馈增益的确定此时,关节的实际位移:pavabaeffaeffaadLvpaLkkkkkkfRsJRsDnRsskkkss)()()()()(2(7-39)其 和 分别为:nabaeffaaeffpavaeffpavabaeffaaeffvabaeffanaeffpankkkfRRJkkkRJkkkkkkfRRJkkkkfRRJkk21222二阶系统的响应速度由固有频率和阻尼比决定
10、,由于机械手不能有超调,所以,其阻尼比应等于1(7-43)系统存在共振频率effrJJ00为了不引起共振,应rn5.0aaaaeffrpkRJkpkRJk40400202(7-49)由上式可确定kp,由(7-43)可确定kv如果固有结构谐振频率0,是按惯量为J0的情况测定的。那么当惯量为另一个值Jeff时,结构频率就由下式确定3.稳态误差及其补偿系统的误差:sTesTcsTsDkkkkkkfRsJRssDnRsssEekkkkfRsJRssDnRskkfRsRJssEttteGpavabaeffaeffaassssvabaeffaeffaadLbaeffaaeffLdL/)()()()()()
11、()()()()()()()()(20022limlim当为阶跃输入时TG(s)为重力产生的力矩Tc(s)为离心力产生的力矩Te/s 为未知的幅值很小的恒值干扰系统的误差与重力、离心力和常值干扰有关,为了减小稳态误差,在控制系统中加入补偿力矩TCOM,系统的稳态误差表达式为:重力负载造成的偏差比较大,但是,我们可以利用运动学和动力学方法计算关节的重力矩TG。给这个关节的附加一个前馈力矩,其大小与计算的重力负载力矩相等。则可以消去重力的影响至于离心力,当 时,因此Tc不会产生稳态位置误差 系统的稳态位置误差仅与常值干扰Te/s有关,通常该值很小t0)(L pavabaeffaeffa2Ga0ss
12、skk)kkkkfR(sJRsTcoms/Te)s(Tc)s(TnRselim 7.6 柔顺控制 柔顺控制又叫依从控制或顺应控制,它是在机器人的操作手受到外部环境约束的情况下,对机器人末端执行器的位置和力的双重控制。顺应控制对机器人在复杂环境中完成任务是很重要的,例如装配,铸件打毛刺,旋转曲柄,开关带铰链的门或盒盖,拧螺钉等。顺应控制可分为两种方式:被动式(Passive Compliance)主动式(Active Compliance)被动式顺应 被动式顺应控制是设计一种柔性机械装置,并把它安装在机械手的腕部,用来提高机械手顺应外部环境的能力,通常称之为柔顺手腕(Compliance Wri
13、st)。这种装置的结构有很多种类型,比较成熟的典型结构是由美国麻省研制的一种称之为RCC(Remote Center Compliance)的无源机械装置,它是一种由铰链连杆和弹簧等弹性材料组成的具有良好消振能力和一定柔顺的无源机械装置。该装置有一个特殊的运动学特性,即在它的中心杆上有一个特殊的点,称为柔顺中心(Compliance Center。若对柔顺中心施加力,则使中心杆产生平移运动,若把力矩施加到该点上,则产生对该点的旋转运动,该点(柔顺中心)往往被选作为工作坐标的原点。被动顺应的结构像RCC这样的被动式柔顺手腕,由于不需要信息处理,而只靠自身的机构调整,所以具有快速响应的能力,而且结
展开阅读全文