第七章三维物体的表示资料课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第七章三维物体的表示资料课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第七 三维 物体 表示 资料 课件
- 资源描述:
-
1、2/16/2023计算机图形学计算机图形学1第第7 7章章 三维物体的表示三维物体的表示 2/16/2023计算机图形学计算机图形学27.1 平面物体的表示平面物体的表示 三维图形物体中运用边界表示的最普遍的方三维图形物体中运用边界表示的最普遍的方式是使用一组包围物体内部的表面多边形。式是使用一组包围物体内部的表面多边形。很多图形系统以一组表面多边形来存储物体很多图形系统以一组表面多边形来存储物体的描述。由于所有表面以线性方程形式加以的描述。由于所有表面以线性方程形式加以描述,因此会简化并加速物体的表面绘制和描述,因此会简化并加速物体的表面绘制和显示。显示。2/16/2023计算机图形学计算机
2、图形学37.1.1 多边形表多边形表 如图如图7.2所示,该方法阐述了一个物体表面的所示,该方法阐述了一个物体表面的两个相邻多边形。两个相邻多边形。图图7.2 7.2 两个相邻多边形小平面的几何数据表表示两个相邻多边形小平面的几何数据表表示 2/16/2023计算机图形学计算机图形学47.1.1 多边形表多边形表 为了加快信息的存取,为了加快信息的存取,可将边表扩充成包括可将边表扩充成包括指向多边形表面表的指向多边形表面表的指针,这样两个多边指针,这样两个多边形的公共边可以很快形的公共边可以很快地标识,如图地标识,如图7.3所所示。示。图图7.3 上图表面的边表扩充成上图表面的边表扩充成包含指
3、向多边形表的指针包含指向多边形表的指针 2/16/2023计算机图形学计算机图形学57.1.2 平面方程平面方程 平面方程可以表示如下:平面方程可以表示如下:Ax+By+Cz+D=0 运用运用Cramer规则,可解出系数规则,可解出系数A、B、C和和D,用行列式表示如下用行列式表示如下:112233111yzAyzyz111222333xyzBxyzxyz112233111xyCxyxy111222333xyzDxyzxyz2/16/2023计算机图形学计算机图形学67.1.2 平面方程平面方程 展开行列式,平面方程中的系数为展开行列式,平面方程中的系数为 平面的空间方向用平面的法向量来表示,
4、如平面的空间方向用平面的法向量来表示,如图图7.47.4所示。所示。123231312123231312123231312()()()()()()()()()Ay zzy zzy zzBz xxz xxz xxCx yxx yyx yy2/16/2023计算机图形学计算机图形学77.1.2 平面方程平面方程 图图7.5示例了一个单位立方体中的一个平面。示例了一个单位立方体中的一个平面。(阴影多边形表面的平面方阴影多边形表面的平面方程为程为x-1=0,法向,法向量为量为N(1,0,0)。2/16/2023计算机图形学计算机图形学87.1.3 多边形网格多边形网格 图图7.7表示了表示了20个顶点
5、形成个顶点形成12个四边形的网格。个四边形的网格。图7.6 三角形带由11个三角形和13个顶点相连而成图7.7 一个四边形网格含有12个四边形由54个顶点组成2/16/2023计算机图形学计算机图形学97.2 二二 次次 曲曲 面面 二次曲面是一类常用的物体,这类表面使用二次曲面是一类常用的物体,这类表面使用二次方程进行描述。其中包括球面、椭球面、二次方程进行描述。其中包括球面、椭球面、环面、抛物面和双曲面。二次曲面,尤其是环面、抛物面和双曲面。二次曲面,尤其是球面和椭球面,是最基本的图形场景,经常球面和椭球面,是最基本的图形场景,经常作为图元而用于图形软件包中,由此可以构作为图元而用于图形软
6、件包中,由此可以构造更复杂的物体。造更复杂的物体。2/16/2023计算机图形学计算机图形学107.2.1 球面球面 用参数形式来描述球用参数形式来描述球面,即使用纬度和经面,即使用纬度和经度度(如图如图7.8所示所示):图图7.8 参数坐标位置参数坐标位置(r,)在半径为在半径为r的球面上的球面上 coscosxrcossinyrsinzr2/16/2023计算机图形学计算机图形学117.2.2 椭球面椭球面 椭球面可以被看成是球面的扩展,其中三条椭球面可以被看成是球面的扩展,其中三条相互垂直的半径具有不同的值相互垂直的半径具有不同的值(如图如图7.10所示所示)。椭球面中心在原点的笛卡儿表
7、达式为椭球面中心在原点的笛卡儿表达式为 2221xyzxyzrrr2/16/2023计算机图形学计算机图形学127.2.2 椭球面椭球面 图图7.10中,使用纬度中,使用纬度角角和经度角和经度角所表所表示的参数方程为示的参数方程为 y=rycoscos z=rzsin 图图7.10 中心在原点、半径中心在原点、半径为为 的椭球面的椭球面 coscosxxr,xyzrrr2/16/2023计算机图形学计算机图形学137.2.3 环面环面 环面是轮胎状的物体,环面是轮胎状的物体,如图如图7.11所示。所示。可以将环面看成是满足可以将环面看成是满足下列方程的解集:下列方程的解集:图图7.11 环面,
8、其圆剖面中心环面,其圆剖面中心在坐标原点处在坐标原点处(cos)cosxx r r(cos)sinyyr rsinzzr2/16/2023计算机图形学计算机图形学147.3 孔斯孔斯(Coons)曲面曲面 1964年年S.A.Coons将将Hermite多项式所描述的多项式所描述的处理曲线的方法推广用以处理曲面,提出一处理曲线的方法推广用以处理曲面,提出一种曲面分片、拼合造型的思想。他用四条边种曲面分片、拼合造型的思想。他用四条边界构造曲面片,并通过叠加修正曲面片,产界构造曲面片,并通过叠加修正曲面片,产生满足用户需要的曲面。生满足用户需要的曲面。2/16/2023计算机图形学计算机图形学15
9、7.3.1 第一类第一类Coons曲面曲面 (1)对对P(0,w)、P(1,w)在在u向进行线性插值,得向进行线性插值,得到如图到如图7.12所示的直纹面。所示的直纹面。图图7.127.12 对对P P(0,(0,w w)、P P(1,(1,w w)在在u u向进行线性插值的直纹面向进行线性插值的直纹面 2/16/2023计算机图形学计算机图形学167.3.1 第一类第一类Coons曲面曲面(2)对对P(u,0)、P(u,1)在在w向进行线性插值,得向进行线性插值,得到如图到如图7.13所示的直纹面。所示的直纹面。图图7.137.13 对对P P(u u,0),0)、P P(u u,1),1)
展开阅读全文