大学精品课件:第五章测量误差的基本知识.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《大学精品课件:第五章测量误差的基本知识.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 精品 课件 第五 测量误差 基本知识
- 资源描述:
-
1、第五章第五章 测量误差的基本知识测量误差的基本知识 测量误差概述 衡量精度的标准 等精度观测值的算术平均值及 精度评定 误差传播定律及其应用 加权平均值及其中误差 第五章学习重点第五章学习重点 1.衡量精度的标准。 2.用最或然误差求观测值的中误差。 3.一般函数求中误差的公式。 5-1 测量误差概述测量误差概述 误差的概念误差的概念 真值真值能代表观测量真实大小的值; 观测值观测值通过观测获得的观测量的值; 误差误差观测值与理论值之间的差值, i=Li-X(真误差)。 误差来源误差来源 仪器:由于设计、制造上的不完善,或检校后存在的残 余误差,给观测值带来的误差。 人:由于人的生理局限,技术
2、水平的高低和工作态度, 给观测值带来的误差。 外界条件:由于外界条件如温度、湿度、风力等的变化, 给观测值带来的误差。 观测条件观测条件 等精度观测与非等精度观测等精度观测与非等精度观测 误差的分类误差的分类 系统误差系统误差 在相同的观测条件下进行一系列观测,如果误差出现的 符号和大小具有确定性的规律,这种误差称为系统误差。 系统误差具有累积性累积性和可消减性可消减性。可以在观测前采取有 效的预防措施、观测时采用合理的方法 ,观测后对观测 结果进行必要的计算改正,以尽量消除或减弱系统误差的 影响。 偶然误差偶然误差 在相同的观测条件下进行一系列观测,如果单个误差出 现的符号和大小都表现出偶然
3、性,但多次观测的误差总体 上具有一定的统计规律性,这种误差称为偶然误差。 任何观测值都会包含系统误差和偶然误差,有时还包含 粗差(错误或超限)。 当观测值中的粗差被剔除,系统误差被消除或削弱到最 小限度,可以认为观测值中仅含偶然误差,从而把观测值 和偶然误差都当作随机变量,用概率统计的方法来研究。 偶然误差的分布偶然误差的分布 一定的观测条件,对应着一个确定的分布。 偶然误差服从数学期望为的正态分布, 即(0,2) y=(nb/n)/d y=f( ) 1.0 0 2.0 3.0 -1.0 -2.0 -3.0 d 0.2 0.4 Sn 偶然误差的统计特性偶然误差的统计特性 在一定观测条件下,偶然
4、误差的绝对值不超 过一定的限值; 绝对值较小的误差比绝对值较大的误差出现 的机会大; 绝对值相等的正误差和负误差出现的机会相 等; 当观测次数无限增加时,偶然误差的算术平 均值趋近于零。 0 lim n n 5-2 衡量精度的标准衡量精度的标准 中误差:用来反映误差分布的密集或离散程 度的量,其大小为该组观测值所对应的标 准差的近似值。 由真误差计算中误差的公式 容许误差:测量中规定的误差的限值,通常 取中误差的三倍或两倍作为限差。 相对误差:绝对误差与观测值的比值,并将 分子化作1的分数。 n m 5-3算术平均值及其中误差算术平均值及其中误差 算术平均值 算术平均值的中误差 观测值的中误差
5、 由观测值的真误差计算中误差 改正数的概念 由观测值的改正数计算中误差 实例 观测值的中误差观测值的中误差 由观测值的真误差计算中误差 其中 改正数的概念 由观测值的改正数计算中误差 (2)+(3),得 令算术平均值的真误差为 则有 )1( n m )2(Xli i )3( ii lxV XxVi i )4(Xx x )6(2 2 2 2 xx xx xii n V n VV n nVVV V (5)(5) 观测值的中误差观测值的中误差 由(3)可知(5)中 =0 所以有 1 11 )( 1 2 22 2 2 2 1, 2 1 2 2 2 21 2 2 2 n VV m n m m n VV
6、m n m n ,n nnn nn Xl X n l Xx n VV n xx n ji ji n i inx x x ji 中误差由改正数计算观测值的 于是有上式右端第二项趋于零无限增大时当 而 (5)(5)式式 实例 设对某角同精度观测6测回,观测值见下表。试求 该角的最或然值、观测值中误差和最或然值中误差。 (计算在表格中进行,注意检核。) 6 . 2 1 n vv m 1 . 1 ) 1( nn vv M 编号 观 测 值 精度评定 1 752126 0 0 2 752124 +2 4 3 752123 +3 9 4 752125 +1 1 5 752128 -2 4 6 752130
7、 -4 1 辅助 计算 x=752126 V=0 VV=34 KD M1 均 5-4 误差传播定律及其应用误差传播定律及其应用 误差传播定律误差传播定律 阐述观测值的中误差与观测值函数中误差之间关 系的定律。 线性函数的误差传播定律 非线性函数的误差传播定律 误差传播定律在测量中的应用举例误差传播定律在测量中的应用举例 水准测量的精度 距离测量的精度 水平角测量的精度 根据实际要求确定观测精度和观测方法 误差传播定律(线性函数)误差传播定律(线性函数) 222 2 2 2 2 1 2 1 222 2 2 2 2 1 2 1 2 1, 1, 222 2 2 2 2 1 2 1 2 )()( 22
8、 )( 11 (r) tt2211 0tt2211 0 )2 , 1( 有次n值进行假若对,KKK=Z则有 KxKxKxK=Z,个独立t设 ttz iiz ji t ji ji ji t ji jitt r tt rr mKmKmKm mKmKmKm KK KKKKK ,n nrkkk ji ji 有 其中 得个式子平方后求和将上列 观测,该组观测 观测值的线性函数 误差传播定律(线性函数)误差传播定律(线性函数) 两种特殊情况 (1)设Z是一组同精度独立观测值的代数和, 该组观测值的中误差均为m,即 Z=x1x2.xn 则 (2)对某量同精度观测n次,则其算术平均值为 设观测值的中误差为m,
9、 则观测值的算术平均值中误差为 nmmz )( 1 21n lll n x n m mx 误差传播定律(非线性函数)误差传播定律(非线性函数) 设t个独立观测值的非线性函数 z=(x1,x2xt) 对该式求全微分,并用真误差代替微分量,有 再利用线性函数的误差传播定律公式,可得 t t x f x f x f 2 2 1 1 222 2 2 2 2 1 2 1 )()()( t t m x f m x f m x f m 误差传播定律(非线性函数)误差传播定律(非线性函数) mmmD mm D h D S m dh D h dS D S dh hS h dS hS S dh h f dS S
10、f dD hSD mhSD mm hS D 5922.29 5 50)0685 . 0 (30023. 1 )()( 922.2905. 2992.29 0 2222 2 2 0 2 2 0 0 00 2222 0 22 0 2222 0 即 于是 求全微分,得对 例: 设沿倾斜面上A、B两点间量得距离S=29.992m3mm,并测得两点 之间的高差h=2.05m50mm。试求水平距离D0及其中误差mD0。 误差传播定律(非线性函数)误差传播定律(非线性函数) 设对下图中的三角形测得=50055010, =89434020,b=150.00m0.05m; 试求a边的长度及其 中误差ma。 解:
展开阅读全文