随机信号课件第二章-平稳随机过程的谱分析.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《随机信号课件第二章-平稳随机过程的谱分析.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 随机 信号 课件 第二 平稳 过程 谱分析
- 资源描述:
-
1、平稳随机过程的谱分析平稳随机过程的谱分析 2023-1-272本章要解决的问题本章要解决的问题 v随机信号是否也可以应用频域分析方法随机信号是否也可以应用频域分析方法?v傅里叶变换能否应用于随机信号?傅里叶变换能否应用于随机信号?v相关函数与功率谱的关系相关函数与功率谱的关系 v功率谱的应用功率谱的应用 v采样定理采样定理 v白噪声的定义白噪声的定义 2023-1-2732.1 随机过程的谱分析随机过程的谱分析 一一 预备知识预备知识1 付氏变换付氏变换设设x(t)是时间是时间t的非周期实函数,且的非周期实函数,且x(t)满足满足 在在 范围内满足狄利赫利条件范围内满足狄利赫利条件)(tx),
2、(绝对可积,即绝对可积,即)(txdttx)(信号的总能量有限,即信号的总能量有限,即)(txdttx2)(有限个极值有限个极值有限个断点有限个断点断点为有限断点为有限值值2023-1-274则则 的傅里叶变换为:的傅里叶变换为:)(txdtetxXtjX)()(其反变换为:其反变换为:deXtxtjX)(21)(称称 为为 的频谱密度,也简称为频谱。的频谱密度,也简称为频谱。)(tx)(XX包含:振幅谱包含:振幅谱 相位谱相位谱2023-1-2752 帕塞瓦等式帕塞瓦等式dtdeXtxdttxtjX)(21)()(2dtdetxXtjX)()(21dXXXX)()(21*dXX2)(21dX
3、dttxX22)(21)(即即能量谱密度能量谱密度2023-1-276二二 随机过程的功率谱密度随机过程的功率谱密度 应用截取函数应用截取函数 TtTttxtxT0)()(2023-1-277当当x(t)为有限值时,为有限值时,的傅里叶变换存在的傅里叶变换存在 )(txTdtetxTXtjTX)(),(TTtjdtetx)(应用帕塞瓦等式应用帕塞瓦等式 dTXdttxXTT22),(21)(dTXTdttxTXTT22),(41)(21dTXTEdttxTEXTT22),(41)(21除以除以2T取集合平均取集合平均2023-1-278令令 ,再取极限,交换求数学期望和积分的次序,再取极限,交
4、换求数学期望和积分的次序 T dTTXEdttXETXTTTT2),(lim21)(21lim22 功率功率Q)(XS非负非负存在存在 dSdttXETQXTTT )(21)(21lim2(1)Q为确定性值,不是随机变为确定性值,不是随机变量量)(XS(2)为确定性实函数。为确定性实函数。注意:注意:2023-1-279两个结论:两个结论:)(2tXEAQ1 .21lim.TAT表示时间平均表示时间平均 若平稳若平稳)0()()(22XRtXEtXEAQ dSQX)(2122023-1-2710功率谱密度:功率谱密度:描述了随机过程描述了随机过程X(t)的的 功率在各个不同频率上的分布功率在各
5、个不同频率上的分布 称为称为随机过程随机过程X(t)的功率谱密度。的功率谱密度。)(XS)(XS对对 在在X(t)的整个频率范围内积分,的整个频率范围内积分,便可得到便可得到X(t)的功率。的功率。)(XS对于平稳随机过程,有:对于平稳随机过程,有:dStXEX)(21)(22023-1-2711例:设随机过程例:设随机过程 ,其中,其中 皆是实常数,皆是实常数,是服从是服从 上均匀分布的随上均匀分布的随机变量,求随机过程机变量,求随机过程 的平均功率。的平均功率。)cos()(0tatX0和a),(20)(tX)(cos)(0222taEtXE)22cos(1 202taEdtaa)22co
6、s(2220202220022)22sin(22taa解:解:taa0222sin2不是宽平稳的不是宽平稳的)(tX2023-1-2712)(2tXEAQ2)2sin2(212022limadttaaTTTT2023-1-2713三三 功率谱密度与自相关函数之间的关系功率谱密度与自相关函数之间的关系 确定信号:确定信号:)()(jXtx随机信号:平稳随机过程的自相关函数随机信号:平稳随机过程的自相关函数功率谱密度。功率谱密度。1 维纳维纳辛钦定理辛钦定理 若随机过程若随机过程X(t)是平稳的,自相关函数绝对是平稳的,自相关函数绝对可积,则自相关函数与功率谱密度构成一对付可积,则自相关函数与功率
7、谱密度构成一对付氏变换,即:氏变换,即:2023-1-2714deRSjXX)()(deSRjXX)(21)(2.证明:证明:TTXESXTX2),(lim)(2 ),(),(21lim*TXTXETXXT TT21lim)()(221121TTtjTTtjdtetXdtetXE TTTTttjTdtdtetXtXET21)(2112)()(21lim TTTTttjXTdtdtettRT21)(1212)(21lim2023-1-2715设设12tt 12ttu 则则22ut 21 ut所以:所以:2121212121),(),(21 uttJ t1t2-TT2T2Tu-2T Tu2Tu2
8、Tu2Tu22023-1-2716则则dueRdTSjXTTTTX )(2121lim)(2022 )(210222dueRdjXTTT )(2121lim2222dueRdTjXTTTTTdeRTTjXTTT)()2(21lim22deRTjXTTT)()21(lim22deRjX)(deRTjXTTT)(2lim22T02T 0)(XR(注意注意 ,且且 ,。因此,通常情。因此,通常情况下,第二项为况下,第二项为0)0)deRjX)(2023-1-2717推论:对于一般的随机过程推论:对于一般的随机过程X(t),有:,有:dettRASjXX),()(deSttRAjXX)(21),(平均
9、功率为:平均功率为:dSdttXETXTTT )(21)(21lim2 利用自相关函数和功率谱密度皆为偶函利用自相关函数和功率谱密度皆为偶函数的性质,又可将维纳数的性质,又可将维纳辛钦定理表示成:辛钦定理表示成:0()2()cosXXSRd 01()()cosXXRSd 2023-1-27183单边功率谱单边功率谱 由于实平稳过程由于实平稳过程x(t)的自相关函数的自相关函数 是实偶函数,功率谱密度也一定是实偶函是实偶函数,功率谱密度也一定是实偶函数。有时我们经常利用只有正频率部分的数。有时我们经常利用只有正频率部分的单边功率谱。单边功率谱。)(XR000)(2)(XXSG2023-1-271
10、9例:平稳随机过程的自相关函数为例:平稳随机过程的自相关函数为 ,A0,求过程的功率谱密度。,求过程的功率谱密度。AeRX)(0 解:应将积分按解:应将积分按 和和 分成两部分进行分成两部分进行 deAedeAeSjjX00)(0)(0)()(jeAjeAjjjjA11222A2023-1-2720例:设例:设 为随机相位随机过程为随机相位随机过程其中,其中,为实常数为实常数 为随机相位,在为随机相位,在 均匀分布。可以推导出这个过程为广义平稳均匀分布。可以推导出这个过程为广义平稳随机过程,自相关函数为随机过程,自相关函数为 求求 的功率谱密度的功率谱密度 。)(tX)cos()(0tAtX0
11、,A)2,0()cos(2)(02tARX)(XS)(tX2023-1-2721解:注意此时解:注意此时 不是有限值,即不不是有限值,即不可积,因此可积,因此 的付氏变换不存在,需要的付氏变换不存在,需要引入引入 函数。函数。dRX )()(XR deAdeRSiiXX)cos(2)()(02deeeAjjj22002)2)(cos(000jjeedeeeAjjj)(0042)()(2002A)(2(00je2023-1-2722例:设随机过程例:设随机过程 ,其中,其中 皆皆为常数,为常数,为具有功率谱密度为具有功率谱密度 的平稳随的平稳随机过程。求过程机过程。求过程 的功率谱密度。的功率谱
12、密度。ttaXtY0sin)()(0,a)(tX)(XS)(tY解:解:)()(),(tYtYEttRY)(sin)(sin)(00ttaXttaXE2000()coscos(2)2XaRt dettRASjYY),()(deRajX02cos)(2)()(4002XXSSa2023-1-2723四四 平稳随机过程功率谱密度的性质平稳随机过程功率谱密度的性质 1 功率谱密度为非负的功率谱密度为非负的,即即 0)(XS证明:证明:TTXESXTX2),(lim)(20),(2TXX0)(XS2 功率谱密度是功率谱密度是 的实函数的实函数 2023-1-27243 对于实随机过程来说,功率谱密度是
13、对于实随机过程来说,功率谱密度是 的偶函数,的偶函数,即即)()(XXSS证明:证明:)(txT是实函数是实函数*)(),(dtetxTXtjTXdtetxtjT)(dtetxtjT)()(),(TXX),(),(),(*2TXTXTXXXX),(),(TXTXXX),(),(*TXTXXX2),(TXXTTXESXTX2),(lim)(2)()(XXSS又又2023-1-27254 功率谱密度可积,即功率谱密度可积,即 dSX)(证明:对于平稳随机过程,有:证明:对于平稳随机过程,有:dStXEX)(21)(2平稳随机过程的均方值有限平稳随机过程的均方值有限dSX)(2023-1-27262
14、.2 联合平稳随机过程的互谱密度联合平稳随机过程的互谱密度一、互谱密度一、互谱密度 考虑两个平稳实随机过程考虑两个平稳实随机过程X(t)、Y(t),它们它们的样本函数分别为的样本函数分别为 和和 ,定义两个截取,定义两个截取函数函数 、为:为:)(tx)(ty txT tyTTtTttxtxT0)()(TtTttytyT0)()(2023-1-2727 因为因为 、都满足绝对可积的条件,都满足绝对可积的条件,所以它们的傅里叶变换存在。在时间范围所以它们的傅里叶变换存在。在时间范围 (-T,T)内,两个随机过程的互功率内,两个随机过程的互功率 为为:(注意(注意 、为确定性函数,所以求平均为确定
15、性函数,所以求平均功率只需取时间平均)功率只需取时间平均)txT tyT)(TQXY txT tyTTTTTXYdttytxTTQ)()(21)(TTdttytxT)()(21 由于由于 、的傅里叶变换存在,故帕的傅里叶变换存在,故帕塞瓦定理对它们也适用,即塞瓦定理对它们也适用,即:txT tyT2023-1-2728dttytxTT)()(*dTYTXYX),(),(21*dttytxTT)()(TTXYdttytxTTQ)()(21)(dTTYTXYX2),(),(21*注意到上式中,注意到上式中,和和 是任一样本函数,因是任一样本函数,因此具有随机性,取数学期望,并令此具有随机性,取数学
16、期望,并令 得:得:)(tx)(ty T2023-1-2729)()(21lim)(limdttytxTEQTQETTTXYXYT ),(21limdtttRTTTXYTdTTXTXEYXT2),(),(lim21*定义互功率谱密度为:定义互功率谱密度为:),(),(21lim)(*TXTXETSYXTXYdSQXYXY)(21则则2023-1-2730同理,有:同理,有:),(),(21lim)(*TXTXETSXYTYXdSQYXYX)(21YXXYQQ且且以上定义了互功率和互功率谱密度,并导出了它们之间的关系。以上定义了互功率和互功率谱密度,并导出了它们之间的关系。2023-1-2731
17、二、互谱密度和互相关函数的关系二、互谱密度和互相关函数的关系自相关函数自相关函数 功率谱密度功率谱密度 F互相关函数互相关函数 互谱密度互谱密度 F 定义:对于两个实随机过程定义:对于两个实随机过程X(t)、Y(t),其互谱密度其互谱密度 与互相关函数与互相关函数 之间之间的关系为的关系为)(XYS),(ttRXYdettRASjXYXY),()()(),(XYXYSttRA即即2023-1-2732若若X(t)、Y(t)各自平稳且联合平稳,则有各自平稳且联合平稳,则有)()(XYXYSRdeRSjXYXY)()(deSRjXYXY)(21)(即即结论:对于两个联合平稳结论:对于两个联合平稳(
18、至少是广义联合平至少是广义联合平稳稳)的实随机过程,它们的互谱密度与其互相的实随机过程,它们的互谱密度与其互相关函数互为傅里叶变换。关函数互为傅里叶变换。2023-1-2733三、互谱密度的性质三、互谱密度的性质性质性质1 1:)()()(*YXYXXYSSS 证明:证明:deRSjXYXY)()(deRjYX)((令(令 )deRjYX)()(*YXSdeRjYX)()()(YXS2023-1-2734性质性质2:)(Re)(ReXYXYSS)(Re)(ReYXYXSS证明:证明:deRSjXYXY)()(djRXY)sin()cos(dRSXYXYcos)()(RedRXYcos)()(R
19、eXYS(令(令 )同理可证同理可证)(Re)(ReYXYXSS2023-1-2735性质性质3:)(Im)(ImXYXYSS)(Im)(ImYXYXSS证明:类似性质证明:类似性质2证明。证明。性质性质4:若若X(t)与与Y(t)正交,则有正交,则有 0)(YXS0)(XYS证明:若证明:若X(t)与与Y(t)正交,则正交,则 0),(),(2121ttRttRYXXY所以所以0)()(YXXYSS2023-1-2736性质性质5 5:若若X(t)与与Y(t)不相关,不相关,X(t)、Y(t)分分别具有常数均值别具有常数均值 和和 ,则,则 XmYm)(2)()(YXYXXYmmSS证明:证
20、明:因为因为X(t)与与Y(t)不相关,所以不相关,所以YXmmtYtXE)()(21 deRSjXYXY )()(demmjYX)(2YXmm)(21()2023-1-2737性质性质6:)(),(XYXYSttRA)(),(YXYXSttRA例:设两个随机过程例:设两个随机过程X(t)和和Y(t)联合平稳,联合平稳,其互相关函数其互相关函数 为为:)(XYR0009)(3eRXY求互谱度求互谱度 ,。)(XYS)(YXS2023-1-2738解:解:deRSjXYXY)()(deej39(3)09jed j39jSSXYYX39)()(*2023-1-27392.3 离散时间随机过程的功率
21、谱密度离散时间随机过程的功率谱密度一一 离散时间随机过程的功率谱密度离散时间随机过程的功率谱密度1 1 平稳离散时间随机过程的相关函数平稳离散时间随机过程的相关函数 设设X(n)为广义平稳离散时间随机过程,为广义平稳离散时间随机过程,或简称为广义平稳随机序列,具有零均值,或简称为广义平稳随机序列,具有零均值,其自相关函数为其自相关函数为:)()()(mTnTXnTXEmRX简写为:简写为:)()()(mnXnXEmRX2023-1-27402 平稳离散时间随机过程的功率谱密度平稳离散时间随机过程的功率谱密度 当当 满足条件式满足条件式 时,我们时,我们定义定义 的功率谱密度为的功率谱密度为 的
展开阅读全文