无刷直流电动机课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《无刷直流电动机课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直流电动机 课件
- 资源描述:
-
1、第第10 10章章 无刷直流电动机无刷直流电动机10.1概述概述10.2无刷直流电动机系统组成无刷直流电动机系统组成10.3三相无刷直流电动机运行分析三相无刷直流电动机运行分析10.4无刷直流电动机的模型无刷直流电动机的模型10.5无刷直流电动机的转矩脉动无刷直流电动机的转矩脉动10.6无位置传感器的转子位置检测无位置传感器的转子位置检测10.7无刷直流电动机的电枢反应无刷直流电动机的电枢反应10.8改变无刷直流电动机转向的方法改变无刷直流电动机转向的方法传统直流电动机具有调速和起动特性好、堵转转矩大等优点,被广泛应用于各种驱动装置和伺服系统。但是,直流电动机中电刷和换向器之间的机械接触严重影
2、响了电机运行的精度、性能和可靠性,所产生的火花会引起电磁干扰,缩短电机寿命,同时电刷和换向器装置使直流电机结构复杂、噪音大、维护困难,限制了其在很多场合中的应用,因此,长期以来人们都在寻求可以不用电刷和换向器装置的直流电动机。随着电子技术的迅速发展以及各种大功率电子器件的广泛应用,这种愿望已逐步得以实现。10.1 概概 述述无刷直流电动机(BrushlessDCMotor,BLDCM)正是随着近年来微处理器技术和新型功率电子器件的不断发展,以及高磁能积、低成本的永磁材料的出现而逐渐成熟的一种新型直流电动机。无刷直流电动机用电子开关线路和位置传感器代替了传统直流电动机中的电刷和换向器,既具有直流
3、电动机的特性,又具有交流电动机结构简单、运行可靠、维护方便等优点。它的转速不再受机械换向的限制,若采用高速轴承,则可以在高达每分钟数万转的转速下运行。无刷直流电动机将电子线路与电机融为一体,把先进的电子技术应用于电机领域,这将促使电机技术更新、更快的发展。无刷直流电动机用途非常广泛,尤其适用于高级电子设备、机器人、航空航天技术、数控装置、医疗化工等高新技术领域。无刷直流电动机有两种定义方式,一种是认为该类电机属于自同步永磁电机,将其中反电动势和供电电流波形均为正弦波的电动机称为调速永磁同步电动机(PermanentMagneticSynchronousMotor,PMSM);而将反电动势和供电
4、电流波形均为方波(梯形波)的电动机称为无刷直流电动机。另一种是将该类电机统称为无刷直流电动机,将反电动势和供电电流波形均为正弦波的称为正弦波无刷直流电动机;而将反电动势和供电电流为方波(梯形波)的称为方波无刷直流电动机。无刷直流电动机是一种通过电子开关线路实现换相的新型电子运行电机,由电动机本体、电子开关线路(功率电子逆变电路)、转子位置传感器和控制器等组成无刷直流电动机系统,其原理框图如图101所示。图中直流电源通过电子开关线路向电动机定子绕组供电,电机转子位置由位置传感器检测并送入控制器,在控制器中经过逻辑处理产生相应的换相信号,以一定的规律控制电子开关线路中的功率开关器件,使之导通或关断
5、,将电源顺序分配给电动机定子的各相绕组,从而使电动机转动。10.2 无刷直流电动机的基本结构无刷直流电动机的基本结构图101无刷直流电动机系统原理框图 图 10-2 无刷直流电动机的基本结构 10.2.1电机本体结构电机本体结构无刷直流电动机本体,首先应满足电磁方面的要求,保证在工作气隙中产生足够的磁通,电枢绕组允许流过一定的电流,以便产生一定的电磁转矩;其次,应满足机械方面的要求,且结构简单、运行可靠。电机本体由定子和转子两个主要部分构成,分内转子和外转子两种型式。除导磁铁心外,转子上安放有用永磁材料制成的永磁体,形成一定极对数的转子磁极。图103无刷直流电动机内转子结构型式(a)面贴式;(
6、b)内嵌式;(c)整体粘结式 定子是电机本体的静止部分,称为电枢,主要由导磁的定子铁心和导电的电枢绕组组成。定子铁心用硅钢片叠成以减少铁心损耗,同时为减少涡流损耗,在硅钢片表面涂绝缘漆,将硅钢片冲成带有齿槽的冲片,槽数根据绕组的相数和极数来定。常用的定子铁心结构有两种,一种为分数槽(每极每相槽数为分数)集中绕组结构,其类似于传统直流电机定子磁极的大齿(凸极)结构,凸极上绕有集中绕组,有时在大齿表面开有多个小齿以减小齿槽转矩,定子大、小齿结构如图104所示;另一种与普通的同步电动机或感应电动机类似,在叠装好的铁心槽内嵌放跨接式的集中或分布绕组,其线圈可以是整距也可以是短距,为减少齿槽转矩和噪音,
7、定子铁心有时采用斜槽。图104定子大小齿结构定子铁心中放置对称的多相(三相、四相或五相)电枢绕组,对称多相电枢绕组接成星形或封闭形(角形),各相绕组分别与电子开关线路中的相应功率开关管相连。当电动机经功率开关电路接上电源后,电流流入绕组,产生磁场,该磁场与转子磁场相互作用而产生电磁转矩,电动机带动负载旋转。电动机转动起来后,便在绕组中产生反电动势,吸收一定的电功率并通过转子输出一定的机械功率,从而将电能转换为机械能。要求绕组能流过一定的电流,产生足够的磁场并得到足够的转矩。10.2.2位置传感器位置传感器转子磁场相对于定子绕组位置的检测是无刷直流电动机运行的关键,对这一位置检测的直接方法就是采
8、用位置传感器,将转子磁极的位置信号转换成电信号。正余弦旋转变压器或者编码器也可用作位置传感器,但成本较高,仅用在精密控制场合。此外,还有利用容易检测的电量信号来间接判断转子磁极位置的方案,其中最具代表性的是电动机定子绕组的反电动势过零检测法或者称为端电压比较法(详见10.6节)。本节将简单介绍电磁式、光电式和霍尔元件式等三种常用位置传感器的结构和原理。1.电磁式位置传感器电磁式位置传感器电磁式位置传感器是利用电磁感应原理来工作的,由定子和转子两部分组成,其结构如图105所示。图105电磁式位置传感器结构(a)传感器AA剖面图;(b)传感器端面图 在图105中,定子上有铁心和线圈,铁心的中间为圆
9、柱体,安放励磁绕组Wj,绕组外施高频(一般为几千赫兹到几十千赫兹)电源励磁;铁心沿定子圆周有轴向凸出的极,极上套有信号线圈Wa、Wb和Wc,以感应信号电压。导磁扇形片放置在不导磁的铝合金圆形基盘上制成转子,固定在电动机的转轴上,扇形片数等于电机极对数。由于励磁电源的频率高达几千赫兹以上,因此定子铁心及转子导磁扇形片均由高频导磁材料(如软磁铁氧体)制成。可以看出,这实际上是有着共同励磁线圈的几个开口变压器。当扇形导磁片随着电动机转子同步旋转时,其与传感器定子圆周凸极的相对位置发生变化,使开口变压器磁路的磁阻变化,信号线圈匝链的磁通大小变化,可感应出不同幅值的电动势,依此判断转子的位置。2.光电式
10、光电式 光电式传感器是由固定在定子上的几个光电耦合开关和固定在转子轴上的遮光盘所组成,如图10-6所示。遮光盘上按要求开出光槽(孔),几个光电耦合开关沿着圆周均布,每只光电耦合开关是由相互对着的红外发光二极管(或激光器)和光电管(光电二极管,三极管或光电池)所组成。红外发光二极管(或激光器)通上电后,发出红外光(或激光);当遮光盘随着转轴转动时,光线依次通过光槽(孔),使对着的光电管导通,相应地产生反应转子相对定子位置的电信号,经放大后去控制功率晶体管,使相应的定子绕组切换电流。光电式位置传感器是利用光电效应而工作的,由固定在定子上的数个光电耦合开关和固定在转子轴上的遮光盘所组成,如图106所
11、示。遮光盘上开有透光槽(孔),其数目等于电动机转子磁极的极对数,且有一定的跨度。光电耦合开关沿圆周均匀分布,每只均由轴向相对的红外发光二极管和光电管(光电二极管或三极管)所组成。使用时,红外发光二极管通电发出红外光,当遮光盘随着转轴转动时,光线依次通过光槽,使对着的光电管导通,产生反应转子相对定子位置的电信号。光电式位置传感器性能较稳定,输出的是直流电信号,无需再进行整流。但其本身产生的电信号一般比较弱,需要放大。图 10-6 光电式位置传感器3.霍尔元件式位置传感器霍尔元件式位置传感器霍尔元件式位置传感器是利用半导体材料的霍尔效应产生输出电压的,它实际上是其电参数按一定规律随周围磁场变化的半
12、导体磁敏元件。用霍尔半导体材料可制成长为l、宽为m、厚为d的六面体4端子元件,霍尔效应原理如图107所示。图107霍尔效应原理 根据霍尔效应原理,如果在垂直于lm面沿厚度方向穿过磁场B,在垂直于md面沿l方向施加控制电流I,则在宽度为m的方向上会产生霍尔电动势EH,可以表示为 IBKdBIREHHH(101)式中,RH为霍尔系数,与材料的电阻率和迁移率有关;KH为灵敏度。霍尔电动势的极性随磁场B方向的变化而变化。霍尔元件式位置传感器也是由定子和转子两部分组成的。由于无刷直流电动机的转子是永磁的,因此可以很方便地利用霍尔元件式位置传感器检测转子的位置。图108所示为霍尔无刷直流电动机原理图,表示
13、采用霍尔元件作为位置传感器的四相无刷直流电动机的工作原理。图108霍尔无刷直流电动机原理图 在图108中,两个霍尔元件H1和H2以间隔90的电角度安置于电机定子A和B相绕组的轴线上作为传感器定子,并通以控制电流,电动机转子磁极的永磁体兼作位置传感器的转子产生励磁磁场。当电机转子旋转时,永磁体N极和S极轮流通过霍尔元件H1和H2,因而产生对应转子位置的两个正的和两个负的霍尔电动势,经逻辑处理后去控制功率晶体管的导通和关断,使4个定子绕组轮流切换电流。霍尔元件体积小、灵敏度高,但对环境和工作温度有一定要求,且安置和定位不便,耐震差,易于损坏。霍尔元件所产生的电动势很低,使用时需要进行放大。在实际应
14、用中,是将霍尔元件与放大电路一起制作在同一块集成块上,构成霍尔集成元件,以方便使用。10.2.3功率电子开关电路功率电子开关电路无刷直流电动机中功率电子开关电路多采用具有自关断能力的全控器件,如GTR、GTO、功率MOSFET和IGBT等,其中功率MOSFET和IGBT目前在应用中已占主导地位。主电路一般有桥式或半桥式(非桥式)两种,与电机电枢绕组的连接有不同的组合,功率电子开关电路如图109所示。其中图(a)和(b)是半桥式电路,其余的是桥式电路。图109功率电子开关电路 电枢绕组的相数和功率电子主电路连接方式不同,电机转矩脉动及绕组利用率也不同。一般来说,相数越多,转矩脉动越小;在相同相数
15、下,桥式电路比半桥式电路转矩脉动小,绕组利用率高。但是随着相数的增多,开关电路中使用的器件也越多,成本也就越高。三相星形桥式电路采用两两导通方式工作,其绕组利用率较高,力矩波动小,因而得到广泛应用。需要指出的是,无刷直流电动机控制系统中开关电路的工作频率是由转子的转速决定的,是一种自控式逆变器。电机中相绕组的频率和电机转速始终保持同步,不会产生振荡和失步。10.2.4控制器控制器控制器是无刷直流电动机正常运行并实现各种调速伺服功能的指挥中心,主要具有以下功能:(1)对正/反转、停车和转子位置信号进行逻辑综合,为功率开关电路各开关管提供开、关信号(换相信号),实现电机的正转、反转及停车控制。(2
16、)在固定的供电电压下,根据速度给定和负载大小产生PWM调制信号来调节电流(转矩),实现电机开环或闭环控制。(3)实现短路、过流、过电压和欠电压等故障的检测和保护。10.3三相无刷直流电动机运行分析三相无刷直流电动机运行分析10.3.1工作原理工作原理图1010所示是三相无刷直流电动机的组成示意图。电机本体是一个两极的永磁电动机,定子三相对称绕组按Y形联结,无中线。功率开关电路采用三相全桥式电路,两两导通工作方式。假设初始时刻转子处于图1011(a)所示的位置。此时,转子位置传感器输出的信号经控制器处理,向功率开关电路的相应开关管送出开通脉冲,使V1、V6导通;电流从电源的正极流出,经V1流入A
17、相绕组,再从B相绕组流出,经V6回到电源的负极,A相绕组正向通电(A+),B相绕组反向通电(B-)。电枢绕组在空间产生的磁场Ba与转子永磁体产生的磁场Br相互作用产生电磁转矩,使电机的转子顺时针转动。图1010三相无刷直流电动机的组成示意图图1011转子位置与绕组电流换相示意图 在这种通电方式下,A、B、C三相绕组每隔60换相一次。除换相过程外,每一时刻总有两相绕组同时通电。功率开关管的导通规律为:V1、V6V1、V2V3、V2V3、V4V5、V4V5、V6V1、V6,共有6个导通状态,每一状态都有两个开关管同时导通,每个开关管导通120,因而该通电方式称为两两导通三相六状态。表101给出了星
18、形联结三相无刷直流电动机两两导通三相六状态的运行规律。在无刷直流电机运行时的每个60范围内,转子磁场沿顺时针方向连续旋转,而定子合成磁场Ba保持在上个位置静止。当转子磁场连续旋转60到达新的位置时,定子合成磁场才跳跃到下一个位置上。可见,定子合成磁场在空间不是连续旋转的,而是一种跳跃式旋转磁场,每次跃进60。以上是以两极电机为例所作的分析,其结论可以推广到p1(p为极对数)的多极电机。对于多极电机,绕组每换相一次,定子合成磁场跃进60电角度,转子旋转60电角度。每一个通电循环,转子转过360电角度;定子共有6个通电状态,每个开关管仍导通120。定子电流产生的电枢磁场在空间有6个不同的位置,称为
19、6个磁状态;前、后出现的两个不同磁状态的磁场轴线间所夹的电角度称为磁状态角(或称状态角),用m表示,此时m=60。10.3.2电枢绕组感应电动势及电枢电流电枢绕组感应电动势及电枢电流转子旋转时,电枢导体切割转子永磁体产生的磁场,或者说电枢绕组匝链的转子永磁体磁通发生变化,在绕组中产生的感应电动势eA、eB和eC称为电枢反电动势。反电动势的大小和波形与气隙永磁场的幅值大小、分布形状和绕组结构形式有关。在方波无刷直流电机中,由转子永磁极产生的气隙磁通密度Bg沿圆周的理想分布为矩形或具有一定平顶宽度的梯形波。实际电机中为减少漏磁,永磁极极弧长度均小于极距,而永磁极存在边缘漏磁,假如不考虑定子齿槽的影
20、响,则气隙磁通密度以极中心线为对称,在极弧范围内基本维持不变(三相电机中其平顶宽度至少应有极距的),而在磁极边缘处逐渐衰减,在几何中性线处为零。32为分析方便,假设:(1)转子永磁体产生的气隙磁场磁通密度沿圆周按理想梯形波分布,平顶宽度为极距,幅值为Bgm(T)。(2)不考虑电枢反应的去磁效应,认为气隙磁密幅值不变。(3)忽略电枢绕组的电感,认为电流可以突变。(4)忽略电子开关器件的开、关过程,认为换相瞬时完成。(5)电枢采用整距集中绕组,每相串联匝数为N,电机转速为n(r/min)。按照电动机惯例,规定三相定子电流和感应电动势的正方向如图1012,A相正电动势的方向如图1013所示。32图1
21、012三相定子感应电动势和电流正方向 图1013A相正电动势的方向 根据假设(1),由于转子磁场在气隙圆周中按梯形波分布,因此在电机旋转时,转子磁场在电枢绕组中产生的反电动势随时间按梯形波规律变化。以图1011(a)所示转子磁极位置作为转子起始位置,可得到如图1014所示的三相绕组感应电动势波形,其幅值为Ea。三相电动势eA、eB和eC波形及幅值相同,相位差为120。下面仍以图1011(a)所示转子磁极位置为起始点,以A相为例来分析绕组内电流和感应电动势的关系。当转子沿顺时针方向从0向120角度位置旋转,即从图1011(a)所示位置转动到图1011(c)所示位置时,A相绕组的两条边A和X分别切
22、割转子S极和N极的峰值磁场,感应电动势eA的值恒定,即eA=+Ea,方向如图1013所示。A相绕组一直保持正向通电,电流幅值恒定,iA=+Ia。当转子从120向180角度位置旋转,即从图1011(c)所示位置转动到图1011(d)所示位置时,A相绕组的两条边A和X切割的磁场改变方向,感应电动势处于从+Ea向Ea变化的过渡阶段,此时A相绕组不通电,iA=0。当转子从180向300角度位置旋转,即从图1011(d)所示位置转动到图1011(f)所示位置时,A相绕组的两条边A和X分别切割转子N极和S极的峰值磁场,感应电动势eA的值恒定,即eA=Ea。A相绕组反向通电,电流幅值恒定,iA=Ia。当转子
23、从300向360(即0)角度位置旋转,即从图1011(f)所示位置转动到图1011(a)所示位置时,A相绕组的两条边A和X切割的磁场又改变方向,感应电动势又处于从Ea向+Ea变化的过渡阶段,此时A相绕组不通电,iA=0。依据表101和图1011给出的两两导通三相六状态运行规律,并结合图1014的三相电动势波形,综合分析可见,在各相反电动势为正或者负的幅值的120范围内,该相处于通电状态。由于不考虑换相及电路的过渡过程,因此理想电流为120宽度的矩形波,如图1014所示。图1014三相绕组感应电动势及电流波形 根据切割定理可以求出各相反电动势的幅值Ea为)V(602anBKnDlNBEgmEag
24、m(102)式中,Da为电枢铁心内径,单位为m;l为铁心长度,单位为m;为与结构有关的常数。由于不考虑电枢反应的去磁效应,磁通密度幅值Bgm保持不变,因而反电动势幅值Ea正比于转速n,可以写为 602aEDNlKEa=KEn(103)式中,KE=KEBgm称为电势系数。取A相正向通电、B相反向通电的时间区间(如图1014中所示060区间)来求电枢电流。当A、B两相绕组同时通电时,绕组线电压uAB等于直流电源电压Us,电势平衡方程为 Us=RaiA+eARaiBeB+2UT(104)式中,Ra为电枢绕组相电阻;2UT为开关管导通压降。因为eA=+Ea,eB=Ea,iA=+Ia,iB=Ia,所以
展开阅读全文