高级人工智能8111课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高级人工智能8111课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高级 人工智能 8111 课件
- 资源描述:
-
1、高级人工智能高级人工智能第六章第六章 概率推理概率推理 史忠植史忠植 中国科学院计算技术研究所2023-1-231内容提要内容提要6.1概述 6.2贝叶斯概率基础6.3贝叶斯学习理论6.4简单贝叶斯学习模型6.56.5贝叶斯网络的建造贝叶斯网络的建造6.66.6主动贝叶斯网络主动贝叶斯网络6.7贝叶斯潜在语义模型6.8贝叶斯网络的证据推理贝叶斯网络的证据推理2023-1-232贝叶斯网络是什么贝叶斯网络是什么l贝叶斯网络是用来表示变量间连接概率的图形模式,它提供了一种自然的表示因果信息的方法,用来发现数据间的潜在关系。在这个网络中,用节点表示变量,有向边表示变量间的依赖关系。l贝叶斯方法正在以
2、其独特的不确定性知识表达形式、丰富的概率表达能力、综合先验知识的增量学习特性等成为当前数据挖掘众多方法中最为引人注目的焦点之一。2023-1-233贝叶斯网络是什么贝叶斯网络是什么l贝叶斯(Reverend Thomas Bayes 1702-1761)学派奠基性的工作是贝叶斯的论文“关于几率性问题求解的评论”。或许是他自己感觉到它的学说还有不完善的地方,这一论文在他生前并没有发表,而是在他死后,由他的朋友发表的。著名的数学家拉普拉斯(Laplace P.S.)用贝叶斯的方法导出了重要的“相继律”,贝叶斯的方法和理论逐渐被人理解和重视起来。但由于当时贝叶斯方法在理论和实际应用中还存在很多不完善
3、的地方,因而在十九世纪并未被普遍接受。2023-1-234贝叶斯网络是什么贝叶斯网络是什么l二十世纪初,意大利的菲纳特(B.de Finetti)以及英国的杰弗莱(Jeffreys H.)都对贝叶斯学派的理论作出重要的贡献。第二次世界大战后,瓦尔德(Wald A.)提出了统计的决策理论,在这一理论中,贝叶斯解占有重要的地位;信息论的发展也对贝叶斯学派做出了新的贡献。1958年英国最悠久的统计杂志Biometrika全文重新刊登了贝叶斯的论文,20世纪50年代,以罗宾斯(Robbins H.)为代表,提出了经验贝叶斯方法和经典方法相结合,引起统计界的广泛注意,这一方法很快就显示出它的优点,成为很
4、活跃的一个方向。2023-1-235贝叶斯网络是什么贝叶斯网络是什么l随着人工智能的发展,尤其是机器学习、数据挖掘等兴起,为贝叶斯理论的发展和应用提供了更为广阔的空间。贝叶斯理论的内涵也比以前有了很大的变化。80年代贝叶斯网络用于专家系统的知识表示,90年代进一步研究可学习的贝叶斯网络,用于数据采掘和机器学习。近年来,贝叶斯学习理论方面的文章更是层出不穷,内容涵盖了人工智能的大部分领域,包括因果推理、不确定性知识表达、模式识别和聚类分析等。并且出现了专门研究贝叶斯理论的组织和学术刊物ISBA2023-1-236贝叶斯网络的应用领域贝叶斯网络的应用领域l辅助智能决策l数据融合l模式识别l医疗诊断
5、l文本理解l数据挖掘2023-1-237统计概率统计概率 统计概率:若在大量重复试验中,事件A发生的频率稳定地接近于一个固定的常数p,它表明事件A出现的可能性大小,则称此常数p为事件A发生的概率,记为P(A),即 pP(A)可见概率就是频率的稳定中心。任何事件A的概率为不大于1的非负实数,即 0P(A)1 2023-1-238条件条件概率概率 条件概率:我们把事件B已经出现的条件下,事件A发生的概率记做为P(A|B)。并称之为在B出现的条件下A出现的条件概率,而称P(A)为无条件概率。若事件A与B中的任一个出现,并不影响另一事件出现的概率,即当P(A)P(AB)或P(B)P(BA)时,则称A与
6、B是相互独立的事件。2023-1-239加法定理加法定理 两个不相容(互斥)事件之和的概率,等于两个事件概率之和,即 P(A+B)P(A)P(B)若A、B为两任意事件,则:P(A+B)P(A)P(B)P(AB)2023-1-2310乘法定理乘法定理 设A、B为两个任意的非零事件,则其乘积的概率等于A(或B)的概率与在A(或B)出现的条件下B(或A)出现的条件概率的乘积。P(AB)P(A)P(B|A)或 P(AB)P(B)P(A|B)2023-1-2311贝叶斯网络定义贝叶斯网络定义贝叶斯网络是表示变量间概率依赖关系的有向无环图,这里每个节点表示领域变量,每条边表示变量间的概率依赖关系,同时对每
7、个节点都对应着一个条件概率分布表(CPT),指明了该变量与父节点之间概率依赖的数量关系。2023-1-2312贝叶斯网的表示方法贝叶斯网的表示方法=P(A)P(S)P(T|A)P(L|S)P(B|S)P(C|T,L)P(D|T,L,B)P(A,S,T,L,B,C,D)条件独立性假设有效的表示CPT:T L B D=0 D=10 0 0 0.1 0.90 0 1 0.7 0.30 1 0 0.8 0.20 1 1 0.9 0.1 .Lung CancerSmokingChest X-rayBronchitisDyspnoeaTuberculosisVisit to AsiaP(D|T,L,B)P
8、(B|S)P(S)P(C|T,L)P(L|S)P(A)P(T|A)贝叶斯网络是表示变量间概率依赖关系的有向无环图2023-1-2313先验概率先验概率 先验概率是指根据历史的资料或主观判断所确定的各事件发生的概率,该类概率没能经过实验证实,属于检验前的概率,所以称之为先验概率。先验概率一般分为两类,一是客观先验概率,是指利用过去的历史资料计算得到的概率;二是主观先验概率,是指在无历史资料或历史资料不全的时候,只能凭借人们的主观经验来判断取得的概率。2023-1-2314后验概率后验概率后验概率一般是指利用贝叶斯公式,结合调查等方式获取了新的附加信息,对先验概率进行修正后得到的更符合实际的概率。
9、2023-1-2315联合概率联合概率也叫乘法公式,是指两个任意事件的乘积的概率,或称之为交事件的概率。2023-1-2316 设设A1,A2,An是两两互斥的事件,且是两两互斥的事件,且P(Ai)0,i=1,2,n,A1+A2+,+An=niiiABPAPBP1)()()(全概率公式全概率公式A1A2A3AnB另有一事件另有一事件B=BA1+BA2+,+BAn称满足上述条件的称满足上述条件的A1,A2,An为为完备事件组完备事件组.2023-1-2317全概率全概率例例:某汽车公司下属有两个汽车制造厂某汽车公司下属有两个汽车制造厂,全部产品的全部产品的40%由甲厂由甲厂生产生产,60%由乙厂
10、生产由乙厂生产.而甲乙二厂生产的汽车的不合格率分别而甲乙二厂生产的汽车的不合格率分别为为1%,2%.求从公司生产的汽车中随机抽取一辆为不合品的概求从公司生产的汽车中随机抽取一辆为不合品的概率率.解解:设设A1,A2分别表示分别表示甲厂汽车甲厂汽车 乙厂汽车乙厂汽车,B表示表示不合格品不合格品 P(A1)=0.4,P(A2)=0.6 P(B/A1)=0.01,P(B/A2)=0.02 A1A2=P(B)=P(A1B+A2B)=P(A1B)+P(A2B)=P(A1)P(B/A1)+P(A2)P(B/A2)=0.40.01+0.60.02 =0.016甲甲乙乙BA1A22023-1-2318 由此可
11、以形象地由此可以形象地把全概率公式看成为把全概率公式看成为“由原因推结果由原因推结果”,每个原因对结果的发每个原因对结果的发生有一定的生有一定的“作用作用”,即结果发生的可能,即结果发生的可能性与各种原因的性与各种原因的“作作用用”大小有关大小有关.全概率全概率公式表达了它们之间公式表达了它们之间的关系的关系.诸诸Ai是原因是原因B是结果是结果A1A2A3A4A5A6A7A8B全概率全概率2023-1-2319njjjiiiABPAPABPAPBAP1)()()()()|(该公式于该公式于1763年由贝叶斯年由贝叶斯(Bayes)给出给出.它它是在观察到事件是在观察到事件B已发生的条件下,寻找
12、导已发生的条件下,寻找导致致B发生的每个原因的概率发生的每个原因的概率.贝叶斯公式贝叶斯公式 设设A1,A2,An是样本空间中的完备事件组是样本空间中的完备事件组且且P(Ai)0,i=1,2,n,另有一事件另有一事件B,则有则有 ni,212023-1-2320贝叶斯规则贝叶斯规则l基于条件概率的定义lp(Ai|E)是在给定证据下的后验概率lp(Ai)是先验概率lP(E|Ai)是在给定Ai下的证据似然lp(E)是证据的预定义后验概率iiiiiiii)p(AA|p(E)p(AA|p(Ep(E)p(AA|p(EE)|p(Ap(B)A)p(A)|p(Bp(B)B)p(A,B)|p(AA1A2A3A4
13、A5A6E2023-1-2321贝叶斯网络的概率解释贝叶斯网络的概率解释l任何完整的概率模型必须具有表示(直接或间接)该领域变量联合分布的能力。完全的枚举需要指数级的规模(相对于领域变量个数)l贝叶斯网络提供了这种联合概率分布的紧凑表示:分解联合分布为几个局部分布的乘积:l从公式可以看出,需要的参数个数随网络中节点个数呈线性增长,而联合分布的计算呈指数增长。l网络中变量间独立性的指定是实现紧凑表示的关键。这种独立性关系在通过人类专家构造贝叶斯网中特别有效。iiinpaxPxxxP)|(),(212023-1-2322简单贝叶斯学习模型简单贝叶斯学习模型简单贝叶斯学习模型(Simple Baye
14、s 或 Nave Bayes)将训练实例I分解成特征向量X和决策类别变量C。简单贝叶斯模型假定特征向量的各分量间相对于决策变量是相对独立的,也就是说各分量独立地作用于决策变量。尽管这一假定一定程度上限制了简单贝叶斯模型的适用范围,然而在实际应用中,不仅以指数级降低了贝叶斯网络构建的复杂性,而且在许多领域,在违背这种假定的条件下,简单贝叶斯也表现出相当的健壮性和高效性111,它已经成功地应用到分类、聚类及模型选择等数据挖掘的任务中。目前,许多研究人员正致力于改善特征变量间独立性的限制54,以使它适用于更大的范围。2023-1-2323简单贝叶斯简单贝叶斯Nave Bayesian结构简单只有两层
15、结构推理复杂性与网络节点个数呈线性关系2023-1-2324设样本A表示成属性向量,如果属性对于给定的类别独立,那么P(A|Ci)可以分解成几个分量的积:)|(*)|(*)|(21imiiCaPCaPCaP ai是样本A的第i个属性 简单贝叶斯学习模型简单贝叶斯学习模型2023-1-2325简单贝叶斯分类模型)|()()()|(1mjijiiCaPAPCPACP)|(ijCaP)(iCP这个过程称之为简单贝叶斯分类(SBC:Simple Bayesian Classifier)。一般认为,只有在独立性假定成立的时候,SBC才能获得精度最优的分类效率;或者在属性相关性较小的情况下,能获得近似最优
16、的分类效果。简单贝叶斯学习模型简单贝叶斯学习模型2023-1-2326基于Boosting简单贝叶斯模型。提升方法(Boosting)总的思想是学习一系列分类器,在这个序列中每一个分类器对它前一个分类器导致的错误分类例子给与更大的重视。尤其是,在学习完分类器Hk之后,增加了由Hk导致分类错误的训练例子的权值,并且通过重新对训练例子计算权值,再学习下一个分类器Hk+1。这个过程重复T次。最终的分类器从这一系列的分类器中综合得出。简单贝叶斯模型的提升简单贝叶斯模型的提升2023-1-2327BoostingBoosting背景背景l来源于:PAC-Learning Model Valiant 19
17、84-11l提出问题:l强学习算法:准确率很高的学习算法l弱学习算法:准确率不高,仅比随机猜测略好l是否可以将弱学习算法提升为强学习算法2023-1-2328BoostingBoosting背景背景l最初的boosting算法 Schapire 1989lAdaBoost算法 Freund and Schapire 19952023-1-2329Boostingconcepts(3)l弱学习机(weak learner):对一定分布的训练样本给出假设(仅仅强于随机猜测)根据有云猜测可能会下雨l强学习机(strong learner):根据得到的弱学习机和相应的权重给出假设(最大程度上符合实际情
18、况:almost perfect expert)根据CNN,ABC,CBS以往的预测表现及实际天气情况作出综合准确的天气预测l弱学习机 强学习机Boosting2023-1-2330BoostingBoosting流程流程(loop1)(loop1)强学习机弱学习机原始训练集加权后的训练集加权后的假设X1?1:-1 弱假设2023-1-2331BoostingBoosting流程流程(loop2)(loop2)强学习机弱学习机原始训练集加权后的训练集加权后的假设Y3?1:-1 弱假设2023-1-2332BoostingBoosting流程流程(loop3)(loop3)强学习机弱学习机原始训
19、练集加权后的训练集加权后的假设Z7?1:-1弱假设2023-1-2333BoostingBoostingl过程:l在一定的权重条件下训练数据,得出分类法Ctl根据Ct的错误率调整权重Set of weightedinstances Classifier Ct train classifier adjust weights2023-1-2334流程描述流程描述lStep1:原始训练集输入,带有原始分布lStep2:给出训练集中各样本的权重lStep3:将改变分布后的训练集输入已知的弱学习机,弱学习机对每个样本给出假设lStep4:对此次的弱学习机给出权重lStep5:转到Step2,直到循环到达
20、一定次数或者某度量标准符合要求lStep6:将弱学习机按其相应的权重加权组合形成强学习机2023-1-2335核心思想核心思想l样本的权重l没有先验知识的情况下,初始的分布应为等概分布,也就是训练集如果有N个样本,每个样本的分布概率为1/Nl每次循环一后提高错误样本的分布概率,分错样本在训练集中所占权重增大,使得下一次循环的弱学习机能够集中力量对这些错误样本进行判断。l弱学习机的权重l准确率越高的弱学习机权重越高l循环控制:损失函数达到最小l在强学习机的组合中增加一个加权的弱学习机,使准确率提高,损失函数值减小。2023-1-2336简单问题演示(简单问题演示(BoostingBoosting
21、训练过程)训练过程)+-+-+-+-+-+-loop1Weak learner1(y=0.5)loop2Weak learner2(x=0.7)loop3Weak learner3(y=0.4)loop4Weak learner4(x=0.6)training set等概分布strong learnerw1*(y0.5?1:-1)+w2*(x0.7?1:-1)+w3*(y0.6?1:-1)2023-1-2337算法算法问题描述问题描述l训练集 (x1,y1),(x2,y2),(xN,yN)lxi Rm,yi -1,+1lDt 为第t次循环时的训练样本分布(每个样本在训练集中所占的概率,Dt总和
22、应该为1)lht:X-1,+1 为第t次循环时的Weak learner,对每个样本给出相应的假设,应该满足强于随机猜测:lwt为ht的权重l 为t次循环得到的Strong learner21),()(xhyPtDyxttiitiithwsignH1)()(2023-1-2338算法算法样本权重样本权重l思想:提高分错样本的权重l 反映了strong learner对样本的假设是否正确l采用什么样的函数形式?)(itiHywrongrightHyiti00)()(expitiHy2023-1-2339算法算法弱学习机权重弱学习机权重l思想:错误率越低,该学习机的权重应该越大l 为学习机的错误概
23、率l采用什么样的函数形式?和指数函数遥相呼应:)(),(xhyPtDyxtt tttw1ln212023-1-2340算法算法-Adaboost-AdaboostTtttttittitttttiiNNxhwsignxHZZxhwyiDiDwRhDTtNiDyxyxyx11111)()(:learner)(strongclassifier final Output thefactorion normalizat a is )(exp()()(Update Compute:learner Get weak usinglearner Train weak:,1For 1)(Initialize1,1
24、,where),(,),(:Given2023-1-2341AdaBoost.M1AdaBoost.M1l初始赋予每个样本相等的权重1/N;lFor t=1,2,T Do l学习得到分类法Ct;l计算该分类法的错误率Et Et=所有被错误分类的样本的权重和;lt=Et/(1-Et)l根据错误率更新样本的权重;正确分类的样本:Wnew=Wold*t 错误分类的样本:Wnew=Woldl调整使得权重和为1;l每个分类法Ct的投票价值为log 1/t 2023-1-2342AdaBoost Training ErrorAdaBoost Training Error24112ttttt22expl将t
25、=1/2-Et;lFreund and Schapire 证明:最大错误率为:l即训练错误率随t的增大呈指数级的减小.2023-1-2343AdaBoost Generalization Error(1)AdaBoost Generalization Error(1)l最大总误差:lm:样本个数ld:VC维lT:训练轮数lPr:对训练集的经验概率l如果T值太大,Boosting会导致过适应(overfit))()(mTdOyxHpr2023-1-2344AdaBoost Generalization Error(2)AdaBoost Generalization Error(2)l许多的试验表
展开阅读全文