计量经济学(英文)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《计量经济学(英文)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 英文 课件
- 资源描述:
-
1、1Lecture OneMethodology of Econometrics2立论?结论?立论?结论?v立论:要求给出求论的路径。v结论:要求说明结论的来源。v自以为是的东西并不见得是真 v我们不是上帝!3我们的习惯是这样的吗?我们的习惯是这样的吗?v结论来自感觉(象上帝)v宏观思考(象战略家)v习惯地提出政策建议(象顾问)v得争取把一个个的大、小问题搞明白再说吧!4Mainstream Analysis ApproachesNormative AnalysisPositive Analysis(empirical analysis)5The Writer D.N.GujarativProf
2、essor of econometrics at the Military Academy at West PointvMaster of CommercevMBAvEditorial refereevAuthorvVisiting Professor6What is EconometricsvEmpirical support to the models vQuantitative analysis of actual economic phenomenavSocial science in which the tools of economic theory,mathematics,and
3、 statistical inference are applied to the analysis.vPositive help vEconomic theory _ measurements7Methodology of EconometricsvStatement of theory or hypothesisvObtaining the datavSpecification of the mathematical modelvSpecification of the econometric modelvEstimation of the parameters of the econom
4、etric modelvHypothesis testingvForecasting or predictionvUsing the model for control or policy purposes8Statement of Theory or HypothesisvPostulate(give some examples)vStatement vNote:hypothesis is not the same as an assumption 9Obtaining the DatavNature vSourcesvLimitations10Types of DataTime serie
5、s data:quantitative,qualitative (dummy variable)(SATIONARY)Cross-sectional data:(HETEROGENEITY)Pooled data:(Panel data)11Sourcesvwww.whitehouse.gov/fsbr/esbr.htmvwww.nber.org (National bureau of economic research)vwww.census.govvStats.bls.govvwww.jstor.gov12Accuracy of Data vNon-experimental in natu
6、revRound-offs and approximationsvNon-responsevSelectivity biasvAggregate levelvConfidentialityvThe results of research are only as good the quality of the data.13Specification of the mathematical modelvYi=b1+b2*Xi 0b2sample parameter-estimate-estimator distribution-population parameter-population ch
7、aracteristicsvConfirmation or refutation of economic theories on the basis of sample evidence vThe basement is statistical inference(Hypothesis testing)21Forecasting or PredictionvHypothesis or theory be confirmedvKnown or predictor variable X vPredict the future values of the dependent22Use of the
8、Model for Control or Policy PurposesvControl variable XvTarget variable YvYi=b1+b2*XivManipulate the control variable X to produce the desired level of the target variable Y23Anatomy of Classical Econometric ModelingvEconomic theoryvMathematical model of theoryvEconometric model of theoryvDatavEstim
9、ation of econometric modelvHypothesis testingvForecasting or predictionvUsing the model for control or policy purposes24第第1章章计量经济学研究的方法论计量经济学研究的方法论4第第2-3章章基本统计概念,概率分布基本统计概念,概率分布4第第4章章估计与假设估计与假设4第第5章章双变量模型的基本思想双变量模型的基本思想4第第6章章双变量模型的假设检验双变量模型的假设检验4第第7章章多元回归:估计与假设检验多元回归:估计与假设检验4第第8章章回归方程的函数形式回归方程的函数形式4
10、第第9章章虚拟变量的回归模型虚拟变量的回归模型4第第10章章多重共线性多重共线性4第第11章章异方差性异方差性4第第12章章自相关性自相关性4第第13章章模型选择:标准与检验模型选择:标准与检验4实验实验实验实验1-6625Please Give Some SuggestionsZ3-W163.COM027-62082852Thank you.26A Review of Some Statistical ConceptsLecture Two27Sample space、Sample points、EventsvPopulation is the set of all possible out
11、comes of random experiment(sample space)vSample point is the each member of this sample spacevEvent is a subset of the sample space28Probability and Random VariablesvP(A)probability(pr;p;pro)vX random variable(r v)vX the value of a random variablev0=P(A)=0,-1)(dxxfbabxaPdxxf)()(30Cumulative Distribu
12、tion Function C D F F(X)=P(X=x)(discrete)=(continuous)xdxxf)(31CDF of Discrete VRPDFCDFX times of face upf(x)(PDF)Value of X f(x)(CDF)01/16X=01/1614/16X=15/1626/16X=211/1634/16X=315/1641/16X=4132CDF11/165/1611/1615/161X234033CDF of Continuous VRPDFCDFValue of X timesf(x)PDF)Value of X timesf(x)(CDF)
13、0=X11/16X=01/161=X24/16X=15/162=X36/16X=211/163=X44/16X=315/164=X51/16X0,symmetrical S=0 or left S2,its variance is)4()2(222221)21(22kkkkkk71An ExamplevGiven k1=10 and k2=8,what is the probability of obtaining an F value (a)of 3.4 or greater;(b)of 5.8 or greater?vThese probabilities are (a)approxima
14、tely 0.05;(b)approximately 0.01.72Relationships1.If the denominator df,k2,is fairly large,the following relationship holds:2.3.Large df,the t,chi square,and F distributions approach the normal distribution,these distributions are known as the distributions related to the normal distribution.2k1Fk1KF
15、tk,1273 An ExamplevLet k1=20 and k2=120.The 5 percent critical F value for these df is 1.48 Therefore,k1F=(20)*(1.48)=29.6.vFrom the chi-square distribution for 20 df,the 5 percent critical chi-square value is about 31.41.74Lecture 3(2)Estimation and Inference75ESTIMATIONvAssume that a random variab
16、le X follows a particular probability distribution but do not know the value(s)of the parameter(s)of the distribution.vif X follows the normal distribution,we may want to know the value of its two parameters,namely,the mean and the variance.76Estimate the UnknownsvWe have a random sample of size n f
17、rom the known probability distribution;vUse the sample data to estimate the unknown probability distribution;(non-pa)vUse the sample data to estimate the unknown parameters.(pa)77Two Categories Point estimation Interval estimation.78Point EstimationvLet X be a rv with PDF f(x;),is the parameter of t
18、he distribution(for simplicity only one unknown parameter).vAssume that we know the theoretical PDF,such as the t distribution do not know the value of.we draw a random sample of size n from this known this PDF and then develop a function of the sample values),(21nxxxfL79Estimator or Estimatevprovid
19、es us an estimate of the true.is known as a statistic,or an estimator,vA particular numerical value taken by the estimator is known as an estimate.can be treated as a random variable.provides us with a rule,or formula,that tells us how we may estimate the true.80An ExamplevSample mean is an estimato
20、r of the true mean value,.If in a specific case =50,this provides an estimate of.The estimator obtained is known as a point estimator because it provides only a single(point)estimate of.Xxxxnn)(121L81Interval EstimationDef of interval estimation:vwe obtain two estimates of,by constructing two estima
21、tors1(x1,x2,xn)and2(x1,x2,xn),and say with some confidence(i.e.,probability)that the interval between 1 and 2 includes the true.vwe provide a range of possible values within which the true may lie.82Key conepts vSampling,Probability distribution,An estimator.vX is normally distributed,then the sampl
22、e mean is also normally distributed with mean=(the true mean)and variance=2/n,N (,2).v probability is 95%Xnx283Interval EstimationvMore generally,in interval estimation we construct two estimators and ,both functions of the sample X values,such thatvThe interval is known as a confidence interval of
23、size 1for,v1 being known as the confidence coefficient,v is known as the level of significance.)10(1)Pr(211284An ExamplevSuppose that the distribution of height of men in a population is normally distributed with mean=and =2.5.vA sample of 100 men drawn randomly from this population had an average h
24、eight of 67.Establish a 95%confidence interval for the mean height(=)in the population as a whole.85SolutionvAs noted,N (,2/n),which in this case becomes N (,2.52/100).v95%confidence interval as 66.5167.49nXnX96.1)(96.1XX86OLS and MLvThere are several methods of obtaining point estimators,the best k
25、nown being the method of Ordinary least-squares and the method of maximum likelihood(ML).vThe desirable statistical properties fall into two categories:small-sample,and large sample,or asymptotic.87Small-Sample PropertiesvUnbiasedness.An estimator is said to be an unbiased estimator of if the expect
展开阅读全文