模式识别与人工智能之十一课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《模式识别与人工智能之十一课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 模式识别 人工智能 十一 课件
- 资源描述:
-
1、Pattern Recognition&artificial IntelligenceLecture 11:聚聚类类算法(七)算法(七)1Artificial Neural Networks Biological and artificial networks Competitive Learning NetworksCompetitive LearningSelf-Organizing Map(SOM)Adaptive Resonance Theory(ART)Relationship between K-means,FCM and Competitive Learning NetworkM
2、odel-based clustering(2)2Biological and artificial networks3Biology:Biological and artificial networks4Artificial The artificial neural network is a group of neurons organized in several layers:Input layer:receives inputs from sources external to the network;Output layer:generates outputs to the ext
3、ernal world.Hidden layer(s):layers in between of the input and output layers,not visible from outside the network.Learning laws:mathematical rules for modifying the weights of a network iteratively according the inputs(and outputs if the learning is supervised).Biological and artificial networks5Mat
4、hematical Explanation A neuron is modeled mathematically as the following:Activation-the net input signal:The net input to the ith node is a weighted sum of all inputs:iijjjnetw xWhere is the input signal from the jth node,is the synaptic connectivity between the jth node and the ith node.jxijw000ij
5、inhibitoryexcitatorywno connectionBiological and artificial networks6Mathematical Explanation Output signal:The output of the ith node is a function of the net input Where is an activation function which can be a sigmoid function,as plotted in the figure below.This function can be either one-sided (
6、top)or two-sided(bottom):()iiijjjyg netgw x()g x0()1g x1()1g x Biological and artificial networks7Mathematical Explanation One-sided:Two-sided:21()(,),()1()(1()aexpaxg x ag xexpaxexpax222()(,)1,()1()(1()aexpaxg x ag xexpaxexpaxwhere is a parameter that controls the slop of Specially,when becomes lin
7、ear,but when becomes a threshold function:a g x,(,)ag x a 0,(,)ag x a0 or 10lim(,)10axg x axBiological and artificial networks8Mathematical Explanation Curve of Sigmoid function Competitive Learning Networks9Competitive learningCompetitive learning is a typical unsupervised learning network,similar
8、to the statistical clustering analysis methods(k-means).The purpose is to discover groups/clusters composed of similar patterns represented by vectors in the n-D space.The competitive learning network has two layers.Competitive Learning Networks10Competitive learningthe input layer composed of nodes
9、 to which an input pattern is presented,and the output layer composed of nodes There different variations in the computation for the output,depending on the specific data and purpose.In the simplest computation,the net input,the activation,of the ith output node is just the inner product of the weig
10、ht vector of the node and the current input vector:1,Tnxxxm,(1,)iyimnCompetitive Learning Networks11Competitive learning1nTiijjijnetw xw xThe outputs of the network are determined by a winner-take-all competition such that only the output node receiving the maximal net input will output 1 while all
11、others output 0:1if.1,0otherwisekiknetmax netimyCompetitive Learning Networks12Competitive learningThe input patterns can be either a binary or a real n-D vector All weights are real(or positive and the weight vector is normalized in a certain sense:01ixor1,Tnxxx0ijw iw211|1,.1,(0)nniijijijjjwwif ww
12、The net input can be considered as the inner product of two vectors and iwxinet|Tiijjiijnetw xcosw xwxCompetitive Learning Networks13Competitive learning222|2|iiicoswxwxwxwhich is closely related to the difference between the two vectors:where is the angle between the two vectors.We see that the wei
13、ght vector of the winning node is closest to the current input pattern vector in the n-D feature space,with smallest angle and therefore smallest Euclidean distance Therefore the competition can also be carried out as:kwx|iid wxCompetitive Learning Networks14Competitive learningTherefore the competi
14、tion can also be carried out as:1if(1,)0otherwiseijkddjmyThe competitive learning law is where()(1)10newoldoldoldiiiiiiioldiioldiiuuuuwwxwwwwxw1 the ith node is winner (),0ioldiiifanduelsewxw15 is the learning rate which reduces from some set initial value(e.g.,0.8)toward 0 by certain scaling factor
15、(e.g.,0.996).01Note that is between and i.e.,the effect of this learning process is to pull the weight vector closest to the current input pattern .newkwoldkwxkw,xCompetitive Learning NetworksCompetitive learningCompetitive Learning NetworksCompetitive learningLearning steps:Generate a set of output
16、 nodes with random weights Choose a random input pattern from the high-dimensional vector space and calculate the activations for each of the output nodes Find the winning node and update its weights Go back to step 2 until the weights are no longer changing,or a set maximum number of iterations is
17、reached.Competitive Learning NetworksCompetitive learning *)()()()(*ttttjpWXW *1W *jW *)(*1tjW )(tpX jW mW *18Example:clustering using competition learning networks Competitive Learning Networks6.08.01X9848.01736.02X707.0707.03X9397.0342.04X8.06.05XFor convenience,we convert the data into the polar
18、For convenience,we convert the data into the polar coordinatecoordinate89.3611X2180 X5.4413X7014X13.5315XAssuming that we have two weighting vectors,their Assuming that we have two weighting vectors,their initial values areinitial values are:0101)0(1W180101)0(2W19Example:clustering using competition
19、 learning networks Competitive Learning Networks x5 x3 x1 w2 w1 x2 x4 T T i i m m e e s s W W1 1 W W2 2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 0 0 1 1 1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 1 5 5 1 1 6 6 1 1 7 7 1 1 8 8 1 1 9 9 2 2 0 0 1 1 8 8.4 4 3 3 -3 3 0 0.8 8 7 7 -3 3 2 2 1 1 1 1 2 2 4 4 2 2 4 4 3 3 4
20、4 3 3 4 4 4 4 4 4 4 4 0 0.5 5 4 4 0 0.5 5 4 4 3 3 4 4 3 3 4 4 7 7.5 5 4 4 2 2 4 4 2 2 4 4 3 3.5 5 4 4 3 3.5 5 4 4 8 8.5 5 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 3 3 0 0 -1 1 3 3 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -9 9 0 0 -9 9 0 0 -8 8 1 1 -8 8 1 1
21、 -8 8 1 1 -8 8 0 0.5 5 -8 8 0 0.5 5 -7 7 5 5 -7 7 5 5 20Example:clustering using competition learning networks Competitive Learning Networks x5 x3 x1 w2 x2 x4 w1 T T i i m m e e s s W W1 1 W W2 2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 0 0 1 1 1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 1 5 5 1 1 6 6 1 1 7 7 1 1
22、8 8 1 1 9 9 2 2 0 0 1 1 8 8.4 4 3 3 -3 3 0 0.8 8 7 7 -3 3 2 2 1 1 1 1 2 2 4 4 2 2 4 4 3 3 4 4 3 3 4 4 4 4 4 4 4 4 0 0.5 5 4 4 0 0.5 5 4 4 3 3 4 4 3 3 4 4 7 7.5 5 4 4 2 2 4 4 2 2 4 4 3 3.5 5 4 4 3 3.5 5 4 4 8 8.5 5 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 3 3
23、 0 0 -1 1 3 3 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -9 9 0 0 -9 9 0 0 -8 8 1 1 -8 8 1 1 -8 8 1 1 -8 8 0 0.5 5 -8 8 0 0.5 5 -7 7 5 5 -7 7 5 5 21Example:clustering using competition learning networks Competitive Learning Networks x5 x3 x1 w2 x2 x4 w1 T T i i m m e e s s W W1 1 W W2 2 1 1 2 2 3 3
24、4 4 5 5 6 6 7 7 8 8 9 9 1 1 0 0 1 1 1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 1 5 5 1 1 6 6 1 1 7 7 1 1 8 8 1 1 9 9 2 2 0 0 1 1 8 8.4 4 3 3 -3 3 0 0.8 8 7 7 -3 3 2 2 1 1 1 1 2 2 4 4 2 2 4 4 3 3 4 4 3 3 4 4 4 4 4 4 4 4 0 0.5 5 4 4 0 0.5 5 4 4 3 3 4 4 3 3 4 4 7 7.5 5 4 4 2 2 4 4 2 2 4 4 3 3.5 5 4 4 3 3.5 5 4 4 8
25、8.5 5 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 3 3 0 0 -1 1 3 3 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -9 9 0 0 -9 9 0 0 -8 8 1 1 -8 8 1 1 -8 8 1 1 -8 8 0 0.5 5 -8 8 0 0.5 5 -7 7 5 5 -7 7 5 5 22Example:clustering using competition learning networks Compe
展开阅读全文