书签 分享 收藏 举报 版权申诉 / 12
上传文档赚钱

类型2019年海南中考数学试题(解析版).doc

  • 上传人(卖家):青草浅笑
  • 文档编号:517026
  • 上传时间:2020-05-10
  • 格式:DOC
  • 页数:12
  • 大小:452.55KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2019年海南中考数学试题(解析版).doc》由用户(青草浅笑)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2019 海南 中考 数学试题 解析 下载 _中考真题_中考复习_数学_初中
    资源描述:

    1、来源2019 年海南省中考数学试卷 适用范围:3九年级 标题2019 年海南省中考数学试卷 考试时间:100 分钟 满分:120 分 题型:1-选择题一、选择题:本大题共12小题,每小题3分,合计36分 题目1(2019 年海南)如果收入 100 元记作100 元,那么支出 100 元记作( ) A100 元 B100 元 C200 元 D200 元 答案A 解析正负数可表示相反意义的量,若正数表示收入,则负数表示支出,支出 100 元可记作 100 元. 分值3 分 章节:1-1-1-1正数和负数 考点:负数的意义 类别:常考题 难度:1-最简单 题目2(2019 年海南)当 m1 时,代数

    2、式 2m3 的值是( ) A1 B0 C1 D2 答案C 解析当 m1 时,2m32(1)31. 分值3 分 章节:1-2-1整式 考点:代数式求值 类别:常考题 难度:1-最简单 题目3(2019 年海南)下列运算正确的是( ) Aa a2a3 Ba6 a2a3 C2a2a22 D(3a2)26a4 答案A 解析 选项 逐项分析 正误 A aa2a12a3. B a 6a2a62a4. C 2a2a2(21)a2a2. D (3a2)232a229a4. 分值3 分 章节:1-15-2-3整数指数幂 考点:合并同类项 考点:同底数幂的乘法 考点:积的乘方 考点:同底数幂的除法 类别:常考题

    3、难度:2-简单 题目4(2019 年海南)分式方程 1 2x 1 的解是( ) Ax1 Bx1 Cx2 Dx2 答案A 解析去分母,得:x21,移项、合并同类项,得:x1.检验:当 x1 时,x2 10,故 x1 是原分式方程的解. 分值3 分 章节:1-15-3分式方程 考点:分式方程的解 类别:常考题 难度:2-简单 题目5 (2019 年海南)海口市首条越江隧道文明东越江通道项目将于 2020 年 4 月份完 工,该项目总投资 3710 000 000 元.数据 3710 000 000 用科学记数法表示为( ) A371 107 B37.1 108 C3.71 108 D3.71 10

    4、9 答案D 解析科学记数法的表示形式为 a 10n,其中 1|a|10.若用科学记数法表示绝对值较大的 数,则 n 的值等于该数的整数位数减去 1,则 a3.71,n1019,故 3710 000 000 3.71 109. 分值3 分 章节:1-1-5-2科学计数法 考点:将一个绝对值较大的数科学计数法 类别:常考题 难度:2-简单 题目6(2019 年海南)图是由 5 个大小相同的小正方体摆成的几何体,它的俯视图是( ) A B C D 答案D 解析该几何体的三视图如图所示,故它的俯视图是选项 D. 分值3 分 章节:1-29-2三视图 考点:简单组合体的三视图 类别:常考题 难度:2-简

    5、单 题目7(2019 年海南)如果反比例函数 y 2a x (a 是常数)的图象在第一、三象限,那么 a 的取值范围是( ) Aa0 Ba0 Ca2 Da2 答案D 解析反比例函数 y 2a x 的图象位于第一、三象限,a20,解得:a2. 正面 俯视图 左视图主视图 分值3 分 章节:1-26-1反比例函数的图像和性质 考点:反比例函数的性质 类别:常考题 难度:2-简单 题目8(2019 年海南)如图,在平面直角坐标系中,已知点 A(2,1),点 B(3,1),平移 线段 AB,使点 A 落在点 A1(2,2)处,则点 B 的对应点 B1的坐标为( ) A(1,1) B(1,0) C(1,

    6、0) D(3,0) 答案C 解析将点 A 向左平移 4 个单位,再向上平移 1 个单位可得到点 A1,故点 B 到点 B1的平 移方式也相同,所以点 B1的坐标为(34,11),即(1,0). 分值3 分 章节:1-7-2平面直角坐标系 考点:点的坐标 类别:常考题 难度:2-简单 题目9(2019 年海南)如图,直线 l1l2,点 A 在直线 l1上,以点 A 为圆心,适当长度为 半径画弧,分别交直线 l1、l2于 B、C 两点,连结 AC、BC.若ABC70 ,则1 的大小为 ( ) A20 B35 C40 D70 答案C 解析由尺规作图可知 ABAC,ABCACB70.又l1l2,ABC

    7、ACB 1180,11802ABC18014040. 分值3 分 章节:1-5-3平行线的性质 考点:两直线平行同位角相等 考点:两直线平行同旁内角互补 类别:常考题 难度:2-简单 题目10某路口的交通信号灯每分钟红灯亮 30 秒,绿灯亮 25 秒,黄灯亮 5 秒,当小明到 达该路口时,遇到绿灯的概率是( ) A 1 2 B 3 4 C 1 12 D 5 12 答案D 解析每一轮红灯、绿灯和黄灯的时间为 60 秒,而绿灯的时间为 25 秒,故路口遇到绿灯的 概率为 25 60 ,即 5 12 . x y A B O l2 l1 1 AB C 分值3 分 章节:1-25-1-2概率 考点:一步

    8、事件的概率 类别:常考题 难度:2-简单 题目11(2019 年海南)如图,在ABCD 中,将ADC 沿 AC 折叠后,点 D 恰好落在 DC 的延长线上的点 E 处.若B60 ,AB3,则ADE 的周长为( ) A12 B15 C18 D21 答案C 解析四边形 ABCD 是平行四边形,DB60,CDAB3.由折叠的性质可 知 AEAD,DCCE,且 D、C、E 共线,ADE 是等边三角形,故ADE 的周长为 18. 分值3 分 章节:1-18-1-1平行四边形的性质 考点:平行四边形边的性质 考点:等边三角形的性质 考点:等边三角形的判定 类别:常考题 难度:2-简单 题目12(2019

    9、年海南)如图,在 RtABC 中,C90 ,AB5,BC4,点 P 是边 AC 上一动点,过点 P 作 PQAB 交 BC 于点 Q,D 为线段 PQ 的中点.当 BD 平分ABC 时, AP 的长度为( ) A 8 13 B15 13 C 25 13 D 32 13 答案B 解析由勾股定理,求得 AC 22 ABBC3.如图,过点 D 作 EFAC 分别交 BC、AB 于点 E、F,则DEQ90.PQAB,四边形 AFDP 是平行四边形,则 DFPA.点 D 是 PQ 的中点,DE 是PCQ 的中位线,DE 1 2 CP.BD 是ABC 的平分线,PQ AB,QDBDBFQBD,BQDQ.设

    10、 APDFx,则 PC3x,DE 1 2 (3 x).由 PQAB 易知PCQABC, CP CQ CA CB 3 4 ,故 CQ 4 3 (3x),则 EQ 2 3 (3 x),BQDQ4 4 3 (3x) 4 3 x,在 RtDEQ 中,由勾股定理,得:DQ2EQ2DE2, A BC D E A B C D P Q 得:( 4 3 x)2 2 3 (3x)2 1 4 (3x)2,化简得:13x250x750,解得:x15 13 或 x5(舍 去),故 AP 的长为15 13 . 分值3 分 章节:1-27-1-1相似三角形的判定 考点:相似三角形的判定(两边夹角) 考点:勾股定理 考点:灵

    11、活选用合适的方法解一元二次方程 类别:常考题 类别:易错题 难度:4-较高难度 二、填空题(本大题满分 16 分,每小题 4 分) 题目13(2019 年海南)因式分解:aba_. 答案 a (b1) 解析多项式中含有公因式 a,直接运用提公因式法因式分解即可. 分值3 分 章节:1-14-3因式分解 考点:因式分解提公因式法 类别:常考题 难度:1-最简单 题目14 (2019 年海南)如图, O 与正五边形 ABCDE 的边 AB、 DE 分别相切于点 B、 D, 则劣弧BD所对的圆心角BOD 的大小为_ . 答案144 解析由正五边形的性质可知AE108.由切线的性质可知ABOEDO90

    12、, BOD180(53)1082902144. 分值3 分 章节:1-24-2-2直线和圆的位置关系 考点:切线的性质 考点:多边形的内角和 类别:常考题 难度:2-简单 题目15(2019 年海南)如图,将 RtABC 的斜边 AB 绕点 A 顺时针旋转 (090 )得 到 AE,直角边 AC 绕点 A 逆时针旋转 (090 )得到 AF,连续 EF.若 AB3,AC2, 且 B,则 EF_. F E Q P D C B A A B C D E O 答案13 解析由题意可知EAFBACABCBAC90.由旋转的性质可知 AE AB3,AFAC2,EF 22 AEAF 22 3213. 分值3

    13、 分 章节:1-17-1勾股定理 考点:勾股定理 考点:三角形内角和定理 类别:常考题 难度:2-简单 题目16(2019 年海南)有 2019 个数排成一行,对于任意相邻的三个数,都有中间的数等 于前后两数的和.如果第一个数是 0,第二个数是 1,那么前 6 个数的和是_,这 2019 个数的和是_. 答案 0 2 解析根据题意,该组数据前 6 个数依次是 0,1,1,0,1,1,故前 6 个数之和为 0. 该组数据从第 7 个数开始循环,即 6 个数一个循环,又201963363,这 2019 个数的和为:03360112. 分值3 分 章节:1-2-2整式的加减 考点:规律数字变化类 类

    14、别:常考题 难度:3-中等难度 三、解答题(本大题满分 68 分) 题目17(1)(2019 年海南)计算:9 3 2(1)3 4. 解析先计算幂运算和开方运算,然后按先乘除、后加减的顺序计算. 答案解:原式91 9 12 112 2. 分值6 分 章节:1-6-3实数 难度:2-简单 考点:有理数加减乘除乘方混合运算 题目17(2)(2019 年海南)解不等式组 10 43 x xx , , 并求出它的整数解. 解析分别求出两个不等式的解集, 找出两个不等式解集的公共部分, 即为该不等式组的解 集,由此得出它的整数解. 答案解:解不等式,得:x1, 解不等式,得:x2, 故这个不等式组的解集

    15、是1x2, 因此,这个不等式组的整数解是 0,1. A B C E F 分值6 分 章节:1-9-3一元一次不等式组 难度:2-简单 类别:常考题 考点:解一元一次不等式组 考点:一元一次不等式组的整数解 题目18(2019 年海南)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选 购百香果,若购买 2 千克“红土”百香果和 1 千克“黄金”百香果需付 80 元,若购买 1 千克“红 土”百香果和 3 千克“黄金”百香果需付 115 元.请问这两种百香果每千克各是多少元? 解析用 x、y 表示出题干中的两组等量关系,由此列方程组解决问题. 答案解:设“红土”百香果每千克 x 元,“

    16、黄金”百香果每千克 y 元,根据题意,得 280 3115 xy xy , , 解得: 25 30. x y , 答:“红土”百香果每千克 25 元,“黄金”百香果每千克 30 元. 分值10 分 章节:1-8-3实际问题与一元一次方程组 难度:3-中等难度 类别:常考题 考点:简单的列二元一次方程组应用题 题目19(2019 年海南)为宣传 6 月 6 日世界海涛日,某校九年级举行了主题为“珍惜海洋 资源, 保护海洋生物多样性”的知识竞赛活动.为了解全年级 500 名学生此次竞赛成绩(百分制) 的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表和统计图.请 根据图表信息解答

    17、以下问题: (1)本次调查一共随机抽取了_个参赛学生的成绩; (2)表中 a_; (3)所抽取的参赛学生的成绩的中位数落在“级别”是_; (3)请你估计,该校九年级竞赛成绩达到 80 分以上(含 80 分)的学生约有_人. 解析(1)由 D 频数和所占百分比求出参赛学生数; (2)根据参赛总学生数和 B、C、D 组的学生数即可求出 a 的值; (3)根据中位数的定义,找出中间数所位于的范围即可; (4)根据样本估计总体的思想,用 C、D 两组学生数所占样本容量的比例即可估算 500 名学 生成绩达到 80 分以上的人数. 答案 (1)50; (2)8; (3)C; (4)320. 分值8 分

    18、章节:1-10-1统计调查 难度:3-中等难度 类别:常考题 知识竞赛成绩扇形统计图 36% 16% A B C D 考点:抽样调查 考点:用样本估计总体 考点:统计表 考点:扇形统计图 考点:中位数 题目20(2019 年海南)图是某区域的平面示意图,码头 A 在观测站 B 的正东方向,码头 A 的北偏西 60 方向上有一小岛 C,小岛 C 在观测点 B 的北偏西 15 方向上,码头 A 到小岛 C 的距离 AC 为 10 海里. (1)填空:BAC_ ,C_ ; (2)求观测站 B 到 AC 的距离 BP(结果保留根号) 解析(1)根据方位角和三角形内角和定理即可求解; (2)由三角函数的

    19、定义用未知数表示出 AC 的长,列方程求解. 答案 (1)30 45 (2)解:设 BPx 海里. 由题意,得:BPAC,则BPCCBA90 . C45 ,CBPC45 ,则 CPBPx. 在 RtABP 中,BAC30 ,则ABP60 . APtanABP BPtan60 BP3x, 3xx10,解得:x535,则 BP535. 答:观测站 B 到 AC 的距离 BP 为(535)海里. 分值10 分 章节:1-28-1-2解直角三角形 难度:3-中等难度 类别:常考题 考点:解直角三角形方位角 题目21(2019 年海南)如图,在边长为 1 的正方形 ABCD 中,E 是边 CD 的中点,

    20、点 P 是边 AD 上一点(与点 A、D 不重合),射线 PE 与 BC 的延长线交于点 Q. (1)求证:PDEQCE; (2)过点 E 作 EFBC 交 PB 于点 F,连续 AF,当 PBPQ 时. 求证:四边形 AFEP 是平行四边形; 请判断四边形 AFEP 是否为菱形,并说明理由. 解析(1)根据正方形的性质和 CD 的中点 ,由 ASA 判定即可; (2)证明 AP 和 EF 平行且相等,由此判定四边形 AFEP 是平行四边形; 判断AFEP 的邻边是否相等,由此判断四边形 AFEP 是否为菱形. 答案 (1)证明:四边形 ABCD 是正方形, DBCD90 , 60 15 AB

    21、 C P 东 北 Q A B C D E F P ECQ90 D. E 是 CD 的中点, DECE. 又DEPCEQ, PDEQCE. (2)证明:如图,由(1)可知PDEQCE, PEQE 1 2 PQ. 又EFBC, PFFB 1 2 PB. PBPQ, PFPE, 12. 四边形 ABCD 是正方形, BAD90 . 在 RtABP 中,F 是 PB 的中点,AF 1 2 BPFP, 34. 又ADBC,EFBC, ADEF, 14, 23. 又PFFP, APFEFP, APEF. 又APEF, 四边形 AFEP 是平行四边形. 四边形 AFEP 不是菱形,理由如下: 设 PDx,则

    22、 AP1x. 由(1)可知PDEQCE, CQPDx, BQBCCQ1x. 点 E,F 分别是 PQ,PB 的中点, EF 是PBQ 的中位线, EF 1 2 BQ1 2 x . 由可知 APEF,即 1x1 2 x ,解得:x 1 3 . PD 1 3 ,AP 2 3 . 在 RtPDE 中,DE 1 2 ,则 PE 22 PDDE 13 6 , APPE, 43 21 Q A B C D E F P 四边形 AFEP 不是菱形. 分值13 分 章节:1-18-2-3 正方形 难度:4-较高难度 类别:常考题 考点:正方形的性质 考点:全等三角形的判定 ASA,AAS 考点:一组对边平行且相

    23、等的四边形是平行四边形 考点:菱形的判定 考点:几何选择压轴 题目22(2019 年海南)如图,已知抛物线 yax2bx5 经过 A(5,0),B(4,3)两 点,与 x 轴的另一个交点为 C,顶点为 D,连结 CD. (1)求该抛物线的表达式; (2)点 P 为该抛物线上一动点(与点 B、C 不重合),设点 P 的横坐标为 t. 当点 P 在直线 BC 的下方运动时,求PBC 的面积的最大值; 该抛物线上是否存在点 P,使得PBCBCD?若存在,求出所有点 P 的坐标;若不存 在,请说明理由. 解析(1)运用待定系数法求抛物线的解析式; (2)用t表示出点P的坐标以及点P到直线BC的竖直距离

    24、, 根据函数的性质求出最大距离, 由此得出PBC 的最大值; 分两种情况讨论:当点 P 在直线 BC 上方时; 当点 P 在直线 BC 下方时. 答案解:(1)抛物线 yax2bx5 经过 A(5,0),B(4,3), 25550 16453 ab ab , , 解得: 1 6 a b , , 该抛物线的表达式为 yx26x5. (2)如图,过点 P 作 PEx 轴于点 F,交直线 BC 于点 F. 在抛物线 yx26x5 中, 令 y0,则 x26x50,解得:x15,x21, 点 C 的坐标为(1,0). 由点 B(4,3)和 C(1,0),可得直线 BC 的表达式为 yx1. 设点 P

    25、的坐标为(t,t26t5),由题知4t1,则点 F(t,t1). FP(t1)(t26t5)t25t4. SPBCSFPBSFPC 1 2 FP 3 3 2 (t25t4) 3 2 (t 5 2 )2 27 8 . 4 5 2 1, 当 t 5 2 时,PBC 的面积的最大值为 27 8 . (2)存在. yx26x5(x3)24, 抛物线的顶点 D 的坐标为(3,4). 由点 C(1,0)和 D(3,4),可得直线 CD 的表达式为 y2x2. 分两种情况讨论: 当点 P 在直线 BC 上方时,有PBCBCD,如图. 若PBCBCD,则 PBCD, 设直线 PB 的表达式为 y2xb. 把

    26、B(4,3)代入 y2xb,得:b5, 直线 PB 的表达式为 y2x5. 由 x26x52x5,解得:x10,x24(舍去), 点 P 的坐标为(0,5). 当点 P 在直线 BC 下方时,有PBCBCD,如图. 设直线 BP 与 CD 交于点 M,则 MBMC. 过点 B 作 BNx 轴于点 N,则点 N(4,0), NBNC3, MN 垂直平分线段 BC. 设直线 MN 与 BC 交于点 G, 则线段 BC 的中点 G 的坐标为( 5 2 , 3 2 ), 由点 N(4,0)和 G( 5 2 , 3 2 ),得 直线 NG 的表达式为 yx4. 直线 CD:y2x2 与直线 NG:yx4 交于点 M, 由 2x2x4,解得:x2, 点 M 的坐标为(2,2). 由 B(4,3)和 M(2,2),得 直线 BM 的表达式 y 1 2 x1, 由 x26x5 1 2 x1,解得:x1 3 2 ,x24(舍去), 点 P 的坐标为( 3 2 , 7 4 ). 综上所述,存在满足条件的点 P 的坐标为(0,5)和( 3 2 , 7 4 ). 分值15 分 章节:1-22-1-4二次函数 y=ax2+bx+c 的图象和性质 难度:4-较高难度 类别:常考题 考点:代数综合 考点:抛物线与一元二次方程的关系

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2019年海南中考数学试题(解析版).doc
    链接地址:https://www.163wenku.com/p-517026.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库