第四章自组织神经网络课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第四章自组织神经网络课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四 组织 神经网络 课件
- 资源描述:
-
1、第四章第四章 自组织神经网络自组织神经网络4.1竞争学习的概念与原理4.2自组织特征映射神经网络自组织神经网络的典型结构自组织神经网络的典型结构 第四章第四章 自组织神经网络自组织神经网络竞争层竞争层输入层输入层第四章第四章 自组织神经网络自组织神经网络自组织学习自组织学习(self-organized learning):通过自动寻找样本中的内在规律和本通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数质属性,自组织、自适应地改变网络参数与结构。与结构。自组织网络的自组织功能是通过竞争自组织网络的自组织功能是通过竞争学习(学习(competitive learning)实现
2、的。)实现的。4.14.1竞争学习的概念与原理竞争学习的概念与原理4.1.1 4.1.1 基本概念基本概念分类分类分类是在类别知识等导师信号的指分类是在类别知识等导师信号的指导下,将待识别的输入模式分配到各自的导下,将待识别的输入模式分配到各自的模式类中去。模式类中去。聚类聚类无导师指导的分类称为聚类,聚类无导师指导的分类称为聚类,聚类的目的是将相似的模式样本划归一类,而的目的是将相似的模式样本划归一类,而将不相似的分离开将不相似的分离开。相似性测量相似性测量欧式距离法欧式距离法)()(iTiiXXXXXX 类 1 类 2 类 1 类 2 T T (a)基于欧式距离的相似性测量 (b)基于余弦
3、法的相似性测量4.1.1 基本概念基本概念 相似性测量相似性测量余弦法余弦法4.1.1 基本概念基本概念iiTXXXXcos类 1 类 2 类 1 类 2 T T (a)基于欧式距离的相似性测量 (b)基于余弦法的相似性测量4.1.2 4.1.2 竞争学习原理竞争学习原理竞争学习规则竞争学习规则Winner-Take-All 网络的输出神经元之间相互竞争以求被网络的输出神经元之间相互竞争以求被激活,结果在每一时刻只有一个输出神经元激活,结果在每一时刻只有一个输出神经元被激活。这个被激活的神经元称为竞争获胜被激活。这个被激活的神经元称为竞争获胜神经元,而其它神经元的状态被抑制,故称神经元,而其它
4、神经元的状态被抑制,故称为为Winner Take All。竞争学习规则竞争学习规则Winner-Take-All1.1.向量归一化向量归一化 首先将当前输入模式向量首先将当前输入模式向量X X和竞争层中各神经元对应的内星向量和竞争层中各神经元对应的内星向量W Wj j 全部进行归一化处理;全部进行归一化处理;(j=1,2,m)(j=1,2,m)Tnjjnnjjxxxx12121.XXX向量归一化之向量归一化之 *向量归一化之向量归一化之 *竞争学习原理竞争学习原理竞争学习规则竞争学习规则Winner-Take-All2.2.寻找获胜神经元寻找获胜神经元 当网络得到一个输入模式向量时,当网络得
5、到一个输入模式向量时,竞争层的所有神经元对应的内星权向量均与其进行相竞争层的所有神经元对应的内星权向量均与其进行相似性比较,并将最相似的内星权向量判为竞争获胜神似性比较,并将最相似的内星权向量判为竞争获胜神经元。经元。欲使两单位向量最相似,须使其点积最大。即:欲使两单位向量最相似,须使其点积最大。即:)(max,.,2,1*XWXWTjmjTj 从上式可以看出,欲使两单位向量的欧式距离从上式可以看出,欲使两单位向量的欧式距离最小,须使两向量的点积最大。即:最小,须使两向量的点积最大。即:)(max,.,2,1*XWXWTjmjTjjmjjWXWXmin,.,2,1*)()(*jTjjWXWXW
6、XTjTjTjT*2WWXWXX)1(2*XWTj竞争学习规则竞争学习规则Winner-Take-All竞争学习规则竞争学习规则胜者为王胜者为王(Winner-Take-All)3.3.网络输出与权值调整网络输出与权值调整*01)1(jjjjtoj)()()()()1(*jjjjjttttWXWWWW)()1(ttjjWW j j j j*步骤步骤3 3完成后回到步骤完成后回到步骤1 1继续训练,直到学习率继续训练,直到学习率衰减到衰减到0 0。*竞争学习的几何意义竞争学习的几何意义竞争学习的几何意义竞争学习的几何意义 *1W *jW *)()()()(*ttttjpWXWh *)(*1tjW
7、 )(tpX jW mW *竞争学习游戏竞争学习游戏将一维样本空间的将一维样本空间的12个样本分为个样本分为3类类竞争学习游戏竞争学习游戏w1w2w3x训练样本集训练样本集o1o1o1例例4.1 4.1 用竞争学习算法将下列各模式分为用竞争学习算法将下列各模式分为2 2类:类:6.08.01X9848.01736.02X707.0707.03X9397.0342.04X8.06.05X解:为作图方便,将上述模式转换成极坐标形式解:为作图方便,将上述模式转换成极坐标形式 :89.3611X8012X5.4413X7014X13.5315X竞争层设两个权向量,随机初始化为单位向量:竞争层设两个权向
8、量,随机初始化为单位向量:0101)0(1W180101)0(2W x5 x3 x1 w2 w1 x2 x4 训训 练练 次次 数数 W W1 1 W W2 2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 0 0 1 1 1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 1 5 5 1 1 6 6 1 1 7 7 1 1 8 8 1 1 9 9 2 2 0 0 1 1 8 8.4 4 3 3 -3 3 0 0.8 8 7 7 -3 3 2 2 1 1 1 1 2 2 4 4 2 2 4 4 3 3 4 4 3 3 4 4 4 4 4 4 4 4 0
9、 0.5 5 4 4 0 0.5 5 4 4 3 3 4 4 3 3 4 4 7 7.5 5 4 4 2 2 4 4 2 2 4 4 3 3.5 5 4 4 3 3.5 5 4 4 8 8.5 5 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 3 3 0 0 -1 1 3 3 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -9 9 0 0 -9 9 0 0 -8 8 1 1 -8 8 1 1 -8 8 1 1 -8 8 0 0.5 5
10、-8 8 0 0.5 5 -7 7 5 5 -7 7 5 5 x5 x3 x1 w2 x2 x4 w1 训训 练练 次次 数数 W W1 1 W W2 2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 0 0 1 1 1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 1 5 5 1 1 6 6 1 1 7 7 1 1 8 8 1 1 9 9 2 2 0 0 1 1 8 8.4 4 3 3 -3 3 0 0.8 8 7 7 -3 3 2 2 1 1 1 1 2 2 4 4 2 2 4 4 3 3 4 4 3 3 4 4 4 4 4 4 4 4 0 0.
11、5 5 4 4 0 0.5 5 4 4 3 3 4 4 3 3 4 4 7 7.5 5 4 4 2 2 4 4 2 2 4 4 3 3.5 5 4 4 3 3.5 5 4 4 8 8.5 5 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 3 3 0 0 -1 1 3 3 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -9 9 0 0 -9 9 0 0 -8 8 1 1 -8 8 1 1 -8 8 1 1 -8 8 0 0.5 5 -8
12、8 0 0.5 5 -7 7 5 5 -7 7 5 5 x5 x3 x1 w2 x2 x4 w1 训训 练练 次次 数数 W W1 1 W W2 2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 0 0 1 1 1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 1 5 5 1 1 6 6 1 1 7 7 1 1 8 8 1 1 9 9 2 2 0 0 1 1 8 8.4 4 3 3 -3 3 0 0.8 8 7 7 -3 3 2 2 1 1 1 1 2 2 4 4 2 2 4 4 3 3 4 4 3 3 4 4 4 4 4 4 4 4 0 0.5 5
13、 4 4 0 0.5 5 4 4 3 3 4 4 3 3 4 4 7 7.5 5 4 4 2 2 4 4 2 2 4 4 3 3.5 5 4 4 3 3.5 5 4 4 8 8.5 5 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 3 3 0 0 -1 1 3 3 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -9 9 0 0 -9 9 0 0 -8 8 1 1 -8 8 1 1 -8 8 1 1 -8 8 0 0.5 5 -8 8 0
14、 0.5 5 -7 7 5 5 -7 7 5 5 x5 x3 x1 w2 x2 x4 w1 训训 练练 次次 数数 W W1 1 W W2 2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 0 0 1 1 1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 1 5 5 1 1 6 6 1 1 7 7 1 1 8 8 1 1 9 9 2 2 0 0 1 1 8 8.4 4 3 3 -3 3 0 0.8 8 7 7 -3 3 2 2 1 1 1 1 2 2 4 4 2 2 4 4 3 3 4 4 3 3 4 4 4 4 4 4 4 4 0 0.5 5 4
15、4 0 0.5 5 4 4 3 3 4 4 3 3 4 4 7 7.5 5 4 4 2 2 4 4 2 2 4 4 3 3.5 5 4 4 3 3.5 5 4 4 8 8.5 5 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 3 3 0 0 -1 1 3 3 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -9 9 0 0 -9 9 0 0 -8 8 1 1 -8 8 1 1 -8 8 1 1 -8 8 0 0.5 5 -8 8 0 0.
16、5 5 -7 7 5 5 -7 7 5 5 x5 x3 x1 w2 x2 x4 w1 训训 练练 次次 数数 W W1 1 W W2 2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 0 0 1 1 1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 1 5 5 1 1 6 6 1 1 7 7 1 1 8 8 1 1 9 9 2 2 0 0 1 1 8 8.4 4 3 3 -3 3 0 0.8 8 7 7 -3 3 2 2 1 1 1 1 2 2 4 4 2 2 4 4 3 3 4 4 3 3 4 4 4 4 4 4 4 4 0 0.5 5 4 4 0
17、 0.5 5 4 4 3 3 4 4 3 3 4 4 7 7.5 5 4 4 2 2 4 4 2 2 4 4 3 3.5 5 4 4 3 3.5 5 4 4 8 8.5 5 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 3 3 0 0 -1 1 3 3 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -9 9 0 0 -9 9 0 0 -8 8 1 1 -8 8 1 1 -8 8 1 1 -8 8 0 0.5 5 -8 8 0 0.5 5
18、 -7 7 5 5 -7 7 5 5 x5 x3 x1 w2 x2 x4 w1 训训 练练 次次 数数 W W1 1 W W2 2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 0 0 1 1 1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 1 5 5 1 1 6 6 1 1 7 7 1 1 8 8 1 1 9 9 2 2 0 0 1 1 8 8.4 4 3 3 -3 3 0 0.8 8 7 7 -3 3 2 2 1 1 1 1 2 2 4 4 2 2 4 4 3 3 4 4 3 3 4 4 4 4 4 4 4 4 0 0.5 5 4 4 0 0.
19、5 5 4 4 3 3 4 4 3 3 4 4 7 7.5 5 4 4 2 2 4 4 2 2 4 4 3 3.5 5 4 4 3 3.5 5 4 4 8 8.5 5 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 3 3 0 0 -1 1 3 3 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -9 9 0 0 -9 9 0 0 -8 8 1 1 -8 8 1 1 -8 8 1 1 -8 8 0 0.5 5 -8 8 0 0.5 5 -7
20、 7 5 5 -7 7 5 5 x5 x3 x1 w2 x2 x4 w1 训训 练练 次次 数数 W W1 1 W W2 2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 0 0 1 1 1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 1 5 5 1 1 6 6 1 1 7 7 1 1 8 8 1 1 9 9 2 2 0 0 1 1 8 8.4 4 3 3 -3 3 0 0.8 8 7 7 -3 3 2 2 1 1 1 1 2 2 4 4 2 2 4 4 3 3 4 4 3 3 4 4 4 4 4 4 4 4 0 0.5 5 4 4 0 0.5 5
21、 4 4 3 3 4 4 3 3 4 4 7 7.5 5 4 4 2 2 4 4 2 2 4 4 3 3.5 5 4 4 3 3.5 5 4 4 8 8.5 5 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 3 3 0 0 -1 1 3 3 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -9 9 0 0 -9 9 0 0 -8 8 1 1 -8 8 1 1 -8 8 1 1 -8 8 0 0.5 5 -8 8 0 0.5 5 -7 7
22、5 5 -7 7 5 5 x5 x3 x1 x2 x4 w1 w2 训训 练练 次次 数数 W W1 1 W W2 2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 0 0 1 1 1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 1 5 5 1 1 6 6 1 1 7 7 1 1 8 8 1 1 9 9 2 2 0 0 1 1 8 8.4 4 3 3 -3 3 0 0.8 8 7 7 -3 3 2 2 1 1 1 1 2 2 4 4 2 2 4 4 3 3 4 4 3 3 4 4 4 4 4 4 4 4 0 0.5 5 4 4 0 0.5 5 4
23、4 3 3 4 4 3 3 4 4 7 7.5 5 4 4 2 2 4 4 2 2 4 4 3 3.5 5 4 4 3 3.5 5 4 4 8 8.5 5 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 3 3 0 0 -1 1 3 3 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -9 9 0 0 -9 9 0 0 -8 8 1 1 -8 8 1 1 -8 8 1 1 -8 8 0 0.5 5 -8 8 0 0.5 5 -7 7 5 5
24、 -7 7 5 5 x5 x3 x1 x2 x4 w1 w2 训训 练练 次次 数数 W W1 1 W W2 2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 0 0 1 1 1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 1 5 5 1 1 6 6 1 1 7 7 1 1 8 8 1 1 9 9 2 2 0 0 1 1 8 8.4 4 3 3 -3 3 0 0.8 8 7 7 -3 3 2 2 1 1 1 1 2 2 4 4 2 2 4 4 3 3 4 4 3 3 4 4 4 4 4 4 4 4 0 0.5 5 4 4 0 0.5 5 4 4 3
25、 3 4 4 3 3 4 4 7 7.5 5 4 4 2 2 4 4 2 2 4 4 3 3.5 5 4 4 3 3.5 5 4 4 8 8.5 5 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 8 8 0 0 -1 1 3 3 0 0 -1 1 3 3 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 -9 9 0 0 -9 9 0 0 -8 8 1 1 -8 8 1 1 -8 8 1 1 -8 8 0 0.5 5 -8 8 0 0.5 5 -7 7 5 5 -7
展开阅读全文