用高斯消元发解线性方程组课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《用高斯消元发解线性方程组课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 用高斯消元发解 线性方程组 课件
- 资源描述:
-
1、用高斯消元法解线性方程组北京景山学校 何江舟.GPA排名系统(CTSC2001)高等院校往往采用GPA来评价学生的学术表现。传统的排名方式是求每一个学生的平均成绩,以平均成绩作为依据进行排名。对于不同的课程,选课学生的平均成绩会受到课程的难易程度等因素的影响,因此这种排名方式不够合理。为此,我们需要对排名系统进行这样的改进:对第i门课的每一个学生的成绩加上一个特定的修正值di(调整后的成绩不按照百分制),使得经过调整后,该课的平均分等于选该课的所有学生的所有课的平均分。对每一门课都这样调整,使得上述条件对所有课程都满足。你的任务是根据一个年级学生某学年的成绩,通过上述调整,得出他们的排名。.简
2、要分析Ai:选修第i门课的学生的集合Bj:第j个学生选修课程的集合Gi,j:第j个学生第I门课的成绩di:第i门课的修正值对于第p门课,可列出如下关系式:pjppAjjpAjBiii,jAjBpp,jA)d(GdG11 这是关于di(i=1,2,n)的线性方程,我们可以整理出n个这样的方程。.线性方程组的一般形式a1,1x1+a1,2x2+a1,nxn=b1a2,1x1+a2,2x2+a2,nxn=b2an,1x1+an,2x2+an,nxn=bn下面是n元线性方程组的一般形式:我们可以把它表示为增广矩阵的形式:a1,1a1,2 a1,nb1a2,1a2,2 a2,nb2an,1an,2 an
3、,nbn.先看一个例子2-131425412072-1314-122.5-1.5 6.52-1314-12 -0.875 5.252 0.52.5得出:x3=5.25/(-0.875)=-6x2=(2-(-1)x3)/4=-1x1=(1-(-1)x2-3x3)/2=9.消元过程a1,1(1)a1,2(1)a1,n(1)b1(1)a2,1(1)a2,2(1)a2,n(1)b2(1)an,1(1)an,2(1)an,n(1)bn(1)注:用上标(k)表示第k次消元前的状态第1次消元,第1行的乘数:(i=2,3,n))1(1,1)1(1,1,aaiima1,1(1)a1,2(1)a1,n(1)b1(
4、1)a2,2(2)a2,n(2)b2(2)an,2(2)an,n(2)bn(2)得到新的增广矩阵:ai,j(2)=ai,j(1)-mi,1a1,j(1)bi(2)=bi(1)-mi,1b1(1)(i,j=2,3,n).第k次消元,第k行的乘数:(i=k+1,k+2,n)消元过程a1,1(1)a1,2(1)a1,n(1)b1(1)a2,2(2)a2,n(2)b2(2)ak,k(k)ak,n(k)bk(k)an,k(k)an,n(k)bn(k)第k次消元前的增广矩阵:)(,)(,kkkkkiaakimai,j(k+1)=ai,j(k)-mi,kak,j(k)bi(k+1)=bi(k)-mi,kbk
5、(k)增广矩阵的变化:(i,j=k+1,k+2,n)第k步消元的主行第k步消元的主元素.回代过程a1,1(1)a1,2(1)a1,n(1)b1(1)a2,2(2)a2,n(2)b2(2)an,n(n)bn(n)最后得到的增广矩阵:)(,1)(,)(iiinijjijiiiiaxabx最终结果的计算:.为什么要选主元素 前面介绍的消元法都是按照自然顺序,即x1、x2、xn的顺序消元的。有:)(,)(,kkkkkiaakim 所以每一次消元的主元素都不能为0。如果按照自然顺序消元的过程中出现的ak,k(k)=0,那么消元无法继续进行下去。或者|ak,k(k)|很小,也会严重影响计算精度。.为什么要
6、选主元素例如(假设运算过程中使用单精度实数):10-101111210-1011-1010-1010解得:x1=0,x2=1 这个解与第二个方程差异很大。究其原因,因为消元过程中第一个方程所乘的系数过大,使得上式“吃掉”了下式,所以在结果中根本无法体现下式。但如果调整一下顺序:11210-101111211解得:x1=1,x2=1,这个解基本符合原方程 所以每次消元的主元素的绝对值应该尽可能大,使得与主行相乘的乘数尽可能小。.选主元素a1,1(1)a1,2(1)a1,n(1)b1(1)a2,2(2)a2,n(2)b2(2)ak,k(k)ak,n(k)bk(k)al,k(k)al,n(k)bl(
展开阅读全文