第9章-异方差问题检验与修正课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第9章-异方差问题检验与修正课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方差 问题 检验 修正 课件
- 资源描述:
-
1、第9章 异方差:检验与修正Heteroskedasticity:test and correctionContents Whats heteroskedasticity?Why worry about heteroskedasticity?How to test the heteroskedasticity?Corrections for heteroskedasticity?Whats heteroskedasticity?Recall the assumption of homoskedasticity implied that conditional on the explanatory
2、 variables,the variance of the unobserved error,u,was constantvar(u|X)=s2(homoskedasticity)If this is not true,that is if the variance of u is different for different values of the Xs,then the errors are heteroskedasticvar(ui|Xi)=si2(heteroskedasticity).X1X2E(Y|X)=b0+b1XYf(Y|X)homoskedasticity.X3Exa
3、mple of Heteroskedasticity.X X1X2Yf(Y|X)X3.E(Y|X)=b0+b1XGenerally,cross-section data more easily induce heteroskedasticity because of different characteristics of different individuals.Consider a cross-section study of family income and expenditures.It seems plausible to expect that low income indiv
4、iduals would spend at a rather steady rate,while the spending patterns of high income families would be relatively volatile.If we examine sales of a cross section of firms in one industry,error terms associated with very large firms might have larger variances than those error terms associated with
5、smaller firms;sales of larger firms might be more volatile than sales of smaller firms.XYhomoskedasticity XYIncreasing with XXYComplicated heteroskedasticity YDecreasing with Xindindsalessalesrdexprdexpprofitprofitindindsalessalesrdexprdexpprofitprofitpackingpacking6375.36375.362.562.5185.1185.1nurs
6、enurse80552.880552.86620.16620.113869.913869.9nonbanknonbank11626.411626.492.992.91569.51569.5spacespace95294952943918.63918.64487.84487.8serviceservice14655.114655.1178.3178.3274.8274.8consumptionconsumption101314.1101314.11595.31595.310278.910278.9metalmetal21896.221896.2258.4258.42828.12828.1elec
7、tronicselectronics116141.3116141.36107.56107.58787.38787.3househouse26408.326408.3494.7494.7225.9225.9chemistrychemistry122315.7122315.74454.14454.116438.816438.8manufacturemanufacture32405.632405.6108310833751.93751.9polymerpolymer141649.9141649.93163.83163.89761.49761.4leisureleisure35107.735107.7
8、1620.61620.62884.12884.1computercomputer175025.8175025.813210.713210.719774.519774.5paperpaper40295.440295.4421.7421.74645.74645.7fuelfuel230614.5230614.51703.81703.822626.622626.6foodfood70761.670761.6509.2509.25036.45036.4autoauto2935432935439528.29528.218415.418415.4050001000015000R&D expenditure
9、(million dollars)0100000200000300000sales(million dollars)050001000015000R&D expenditure(million dollars)/Fitted values0100000200000300000sales(million dollars)Why Worry About Heteroskedasticity?The consequences of heteroskedasticity OLS estimates are still unbiased and consistent,even if we do not
10、assume homoskedasticity.take the simple regression as an example Y=b0+b1 X+uWe know the OLS estimator of b1 is 11221112iiiiiiiiiXX YXX uXXXXXX uEEXXbbbbb+The consequences of heteroskedasticity,cont.The R2 and adj-R2 are unaffected by heteroskedasticity.Because RSS and TSS are not affected by heteros
11、kedasticity,our R2 and adj-R2 are also not affected by heteroskedasticity.221111ESSRSSRTSSTSSRSSnkRTSSn The consequences of heteroskedasticity,cont.The standard errors of the estimates are biased if we have heteroskedasticity211112222222122var,varvarBecause of heteroskedasticity,then var,which are n
12、ot constant,therefore,var.However,OLS esiiiiiiiiiiiiiiXX uXX uXXuXXXXXXuXXXXbbbbssb+212timate of the variance of is.So,in this case,OLS estimates of the variances of the partial coefficients are biased.iXXsbThe consequences of heteroskedasticity,cont.The OLS estimates arent efficient,thats the varia
13、nces of the estimates are not the smallest variances.If the standard errors are biased,we can not use the usual t statistics or F statistics for drawing inferences.That is,the t test and F test and the confidence interval based on these test dont work.In a word,when there exists heteroskedasticity,w
14、e can not use t test and F test as usual.Or else,well get the misleading result.Summary of the consequences of heteroskedasticity OLS estimates are still unbiased and consistent The R2 and adj-R2 are unaffected by heteroskedasticity The standard errors of the estimates are biased.The OLS estimates a
15、rent efficient.Then,the t test and F test and the confidence interval dont work.How to test the heteroskedasticity?Residual plot w In the OLS estimation,we often use the residual ei to estimate the random error term ui,therefore,we can test whether there is heteroskedasticity of ui by examine ei.We
16、plot the scatter graph between ei2 and X.Residual plot,cont.Xe2a)homoskedasticity Xe2b)Xe2c)Xe2d)Xe2e)Residual plot,cont.w If there are more than one independent variables,we should plot the residual squared with all the independent variables,separately.w There is a shortcut to do the residual plot
17、test when there are more than 1 independent variables.That is,we plot the residual with the fitted value,because is just the linear combination of all Xs.Residual plot:example 9.2-50000500010000Residuals/Fitted values0100000200000300000sales(million dollars)02.00e+074.00e+076.00e+07e2010000020000030
18、0000sales(million dollars)Park testuIf there exists heteroskedasticity,then the variance of error term ui,si2 may be correlated with some of the independent variables.Therefore,we can test whether si2 is correlated with any of the explanatory variables.If they are related,then there exists heteroske
19、dasticity,on the contrary,theres no heteroskedasticity.uFor example,for the simple regression model nln(si2)=b0+b1 ln(Xi)+viProcedure of Park testuRegress dependent variable(Y)on independent variables(Xs),first.uGet the residual of the first regression,ei and ei2.uThen,take ln(ei2)as dependent varia
20、ble,the original independent variables logged as explanatory variables,make a new regression.uln(ei2)=b0+b1 ln(Xi)+viuThen test H0:b1=0 against H1:b1 0.uIf we can not reject the null hypothesis,then that prove there is no heteroskedasticity,thats,homoskedasticity.Park test:ExampleuLet take example 9
21、.2 as exampleuFirst,regress R&D expenditure(rdexp)on sales(sales),we getnrdexp=192.91+0.0319 salesnSe=(991.01)(0.0083)nN=18 R2=0.4783 Adj-R2=0.4457 F(1,16)=14.67uSecond,get the residuals(ei)of the regressionuThird,regress ln(ei2)on ln(sales),we getnln(ei2)=1.216 ln(sales)nSe =(0.057)np =(0.000)R2=0.
22、9637 Adj-R2=0.9615uFinally,we test whether the slope of the second regression equal zero.From the p-value of the parameter,given 5%significant level,we will can reject the null hypothesis.Therefore,there exist heteroskedasticity in the first regression.uNote:Park test is not a good test for heterosk
23、edeasticity because of his special specification of the auxiliary regression,which may be heteroskedastic.The essence of Glejser test is same to Park test.But,Glejser suggest we can use the following regression to detect the heteroskedasticity of u.|ei|=b0+b1 Xi+vi|ei|=b0+b1 Xi+vi|ei|=b0+b1 1/Xi)+vi
24、Still,we just test H0:b1=0 against H1:b1 0.If we can reject the null hypothesis,then that prove there is heteroskedasticity.On the contrary,its homoskedasticity.First,regress R&D expenditure(rdexp)on sales(sales),we getrdexp=192.91+0.0319 salesSe=(991.01)(0.0083)N=18 R2=0.4783 Adj-R2=0.4457 F(1,16)=
25、14.67Second,get the residuals(ei)of the regressionThird,regress|ei|on 1/sales,we get|ei|=2273.651992500 1/sales)se=(604.69)(12300000)p =(0.002)(0.125)Finally,test whether the slope is zero.From the p-value of the slope,we can see it larger than 5%of significance level.We can not reject the null hypo
展开阅读全文