书签 分享 收藏 举报 版权申诉 / 72
上传文档赚钱

类型勾股定理的应用省优获奖课 公开课一等奖课件 公开课一等奖课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5164174
  • 上传时间:2023-02-15
  • 格式:PPT
  • 页数:72
  • 大小:4.02MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《勾股定理的应用省优获奖课 公开课一等奖课件 公开课一等奖课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    勾股定理的应用省优获奖课 公开课一等奖课件 勾股定理 应用 省优 获奖 公开 一等奖 课件
    资源描述:

    1、1.3 勾股定理的应用第一章 勾股定理情境引入学习目标1.学会运用勾股定理求立体图形中两点之间的最短距离(重点)2.能够运用勾股定理解决实际生活中的问题.(重点,难点)在A点的小狗,为了尽快吃到B点的香肠,它选择A B 路线,而不选择A C B路线,难道小狗也懂数学?CBAAC+CBAB(两点之间线段最短)导入新课导入新课情境引入思考:在立体图形中,怎么寻找最短线路呢?情景引入数学来源于生活,勾股定理的应用在生活中无处不在,观看下面视频,你们能理解曾小贤和胡一菲的做法吗?导入新课导入新课讲授新课讲授新课立体图形中两点之间的最短距离一BA问题:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B

    2、处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?BAdABAABBAO想一想:蚂蚁走哪一条路线最近?A 蚂蚁AB的路线 若已知圆柱体高为12 cm,底面半径为3 cm,取3,则:BA3O12侧面展开图123AB15)33(12222ABAB【方法归纳】立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.AA例1 有一个圆柱形油罐,要以A点环绕油罐建梯子,正好建在A点的正上方点B处,问梯子最短需多少米?(已知油罐的底面半径是2 m,高AB是5 m,取3)ABABAB解:油罐的展开图如图,则AB为梯子的

    3、最短距离.AA=232=12,AB=5,AB=13.即梯子最短需13米.典例精析数学思想:立体图形平面图形转化展开变式1:当小蚂蚁爬到距离上底3cm的点E时,小明同学拿饮料瓶的手一抖,那滴甜甜的饮料就顺着瓶子外壁滑到了距离下底3cm的点F处,小蚂蚁到达点F处的最短路程是多少?(取3)EFEFEFEF解:如图,可知ECF为直角三角形,由勾股定理,得 EF2=EC2+CF2=82+(12-3-3)2=100,EF=10(cm).B牛奶盒A变式2:看到小蚂蚁终于喝到饮料的兴奋劲儿,小明又灵光乍现,拿出了牛奶盒,把小蚂蚁放在了点A处,并在点B处放上了点儿火腿肠粒,你能帮小蚂蚁找到完成任务的最短路程么?

    4、6cm8cm10cmBB18AB2610B3AB12=102+(6+8)2=296AB22=82+(10+6)2=320AB32=62+(10+8)2=360勾股定理的实际应用二问题:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺.(1)你能替他想办法完成任务吗?解解:连接对角线AC,只要分别量出AB、BC、AC的长度即可.AB2+BC2=AC2ABC为直角三角形(2)量得AD长是30 cm,AB长是40 cm,BD长是50 cm.AD边垂直于AB边吗?解:AD2+AB2=302+402=502=BD2,得DAB=90,AD边垂直于AB边.(3)若随身只有

    5、一个长度为20 cm的刻度尺,能有办法检验AD边是否垂直于AB边吗?解:在AD上取点M,使AM=9,在AB上取点N使AN=12,测量MN是否是15,是,就是垂直;不是,就是不垂直.例2 如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.故滑道AC的长度为5 m.解:设滑道AC的长度为x m,则AB的长也为x m,AE的长度为(x-1)m.在RtACE中,AEC=90,由勾股定理得AE2+CE2=AC2,即(x-1)2+32=x2,解得x=5.数学思想:实际问题数学问题转化建模例3 一个门框的尺寸如图所示,一块长3m,宽2.2

    6、m的长方形薄木板能否从门框内通过?为什么?2m1mABDC典例精析解:在RtABC中,根据勾股定理,AC2=AB2+BC2=12+22=5 52.24.AC 因为AC大于木板的宽2.2m,所以木板能从门框内通过.分析:可以看出木板横着,竖着都不能通过,只能斜着.门框AC的长度是斜着能通过的最大长度,只要AC的长大于木板的宽就能通过.ABDCO 解:在RtABC中,根据勾股定理得OB2=AB2-OA2=2.62-2.42=1,OB=1.在RtCOD中,根据勾股定理得OD2=CD2-OC2=2.62-(2.4-0.5)2=3.15,3.151.77,OD1.7710.77.BDODOB 梯子的顶端

    7、沿墙下滑0.5m时,梯子底端并不是也外移0.5m,而是外移约0.77m.例4 如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m.如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?例5 在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?8 米6米 8 米米6米米ACB解:根据题意可以构建一直角三角形模型,如图.在RtABC中,AC=6米,BC=8米,由勾股定理得22226810.ABACBC米这棵树在折断之前的高度是10+6=16(米).利用勾股定理解决实际问题的一般步骤:(1)读

    8、懂题意,分析已知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题.归纳总结数学问题直角三角形勾股定理实际问题转化构建利用解决例6 如图,在一次夏令营中,小明从营地A出发,沿北偏东53方向走了400m到达点B,然后再沿北偏西37方向走了300m到达目的地C.求A、C两点之间的距离解:如图,过点B作BEAD.DABABE53.37CBAABE180,CBA90,AC2BC2AB2300240025002,AC500m,即A、C两点间的距离为500m.E方法总结 此类问题解题的关键是将实际问题转化为数学问题;在数学模型(直角三角形)中,应用勾股定理或勾股定理的逆定

    9、理解题当堂练习当堂练习1如图是一张直角三角形的纸片,两直角边AC6 cm,BC8 cm,将ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cm C.6 cm D.10 cmABCDEB2有一个高为1.5 m,半径是1 m的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5 m,问这根铁棒有多长?解:设伸入油桶中的长度为x m,则最长时:最短时,x=1.5所以最长是2.5+0.5=3(m).答:这根铁棒的长应在23 m之间.所以最短是1.5+0.5=2(m).2221.52x 解得:x=2.5梯子的顶端沿墙下滑4 m,梯子底端外移

    10、8 m.解:在RtAOB中,,242522222AOABOB.7OB在RtCOD中,3.一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?,202522222COCDOD.15OD.8OBODBD4.我国古代数学著作九章算术中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?D DA AB BC C解:设水池的水深AC为x尺,则这根芦苇长

    11、AD=AB=(x+1)尺,在直角三角形ABC中,BC=5尺由勾股定理得,BC2+AC2=AB2即 52+x2=(x+1)225+x2=x2+2x+1,2 x=24,x=12,x+1=13.答:水池的水深12尺,这根芦苇长13尺.5.为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?解:如图,在RtABC中,因为AC36cm,BC108427(cm)由勾股定理,得AB2AC2BC23622722025452,所以AB45cm,所以整个油纸的长为454180(cm)勾

    12、股定理的应用立体图形中两点之间的最短距离课堂小结课堂小结勾股定理的实际应用1.1 探索勾股定理第一章 勾股定理导入新课讲授新课当堂练习课堂小结第2课时 验证勾股定理1.学会用几种方法验证勾股定理(重点)2.能够运用勾股定理解决简单问题(重点,难点)学习目标导入新课导入新课观察与思考 活动:请你利用自己准备的四个全等的直角三角形拼出以斜边为边长的正方形 有不同的拼法吗?讲授新课讲授新课勾股定理的验证一 据不完全统计,验证的方法有400多种,你有自己的方法吗?问题:上节课我们认识了勾股定理,你还记得它的内容吗?那么如何验证勾股定理呢?几何画板:勾股定理的多种证明演示.gsp双击图标aaaabbbb

    13、cccc方法小结:我们利用拼图的方法,将形的问题与数的问题结合起来,再进行整式运算,从理论上验证了勾股定理 验证方法一:验证方法一:毕达哥拉斯证法大正方形的面积可以表示为 ;也可以表示为 .(a+b)2c2+4 ab(a+b)2=c2+4 ab a2+2ab+b2=c2+2ab a2+b2=c21212cabcab 验证方法二:赵爽弦图验证方法二:赵爽弦图bcabc大正方形的面积可以表示为 ;也可以表示为 .c2=4 ab+(b-a)2 =2ab+b2-2ab+a2 =a2+b2 a2+b2=c2c24 ab+(b-a)21212bcabcaABCD如图,梯形由三个直角三角形组合而成,利用面积

    14、公式,列出代数关系式,得化简,得2111()()2.222a b b aabc 222.abc 验证方法三:美国总统证法验证方法三:美国总统证法 abc青入青方青出青出青入青入朱入朱方朱出青朱出入图课外链接abcABCDEFO达芬奇对勾股定理的证明AaBCbDEFOABCDEF 如图,过 A 点画一直线 AL 使其垂直于 DE,并交 DE 于 L,交 BC 于 M.通过证明BCFBDA,利用三角形面积与长方形面积的关系,得到正方形ABFG与矩形BDLM等积,同理正方形ACKH与 矩形MLEC也等积,于是推得222ABACBC 欧几里得证明勾股定理推荐书目议一议ccbbaa观察下图,用数格子的方

    15、法判断图中三角形的三边长是否满足a2+b2=c2.勾股定理的简单应用二例1:我方侦查员小王在距离东西向公路400m处侦查,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400m,10s后,汽车与他相距500m,你能帮小王计算敌方汽车的速度吗?公路公路BCA400m500m解:由勾股定理,得AB2=BC2+AC2,即 5002=BC2+4002,所以,BC=300.敌方汽车10s行驶了300m,那么它1h行驶的距离为300660=108000(m)即它行驶的速度为108km/h.练一练1.湖的两端有A、两点,从与A方向成直角的BC方向上的点C测得CA=130米,CB=120

    16、米,则AB为()ABCA.50米 B.120米 C.100米 D.130米130120?AABC2.如图,太阳能热水器的支架AB长为90 cm,与AB垂直的BC长为120 cm.太阳能真空管AC有多长?解:在RtABC中,由勾股定理,得 AC2=AB2+BC2,AC2=902+1202,AC=150(cm).答:太阳能真空管AC长150 cm.例2:如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA12km,BB14km,A1B18km.现要在高速公路上A1、B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离和解:作点B关于MN的对称点B,连

    17、接AB,交A1B1于P点,连BP.则APBPAPPBAB,易知P点即为到点A,B距离之和最短的点过点A作AEBB于点E,则AEA1B18km,BEAA1BB1246(km)由勾股定理,得BA2AE2BE28262,AB10(km)即APBPAB10km,故出口P到A,B两村庄的最短距离和是10km.变式:如图,在一条公路上有A、B两站相距25km,C、D为两个小镇,已知DAAB,CB AB,DA=15km,CB=10km,现在要在公路边上建设一个加油站E,使得它到两镇的距离相等,请问E站应建在距A站多远处?DAEBC151025-x,25)AExEBx 解解:设设长长为为 千千米米则则长长为为

    18、(千千米米,由由题题意意得得:2222151025)xx (10 x 解解得得:10EA答答:站站应应建建在在距距 站站千千米米处处.当堂练习当堂练习1.在直角三角形中,满足条件的三边长可以是 (写出一组即可)【解析】答案不唯一,只要满足式子a2+b2=c2即可.答案:3,4,5(满足题意的均可)2.如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,阳光透过的最大面积是_.200m23.如图,一根旗杆在离地面9 m处折断,旗杆顶部落在离旗杆底部12 m处.旗杆原来有多高?12 m12 m9 m9 m解:设旗杆顶部到折断处的距离为x m,根据勾股定

    19、理得222912x,解得x=15,15+9=24(m).答:旗杆原来高24 m.4.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,AD=13m,B=ACD=90小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?解:在RtABC中,由勾股定理,得 AC2=AB2+BC2,AC=5m,在RtACD中,由勾股定理,得 CD2=AD2AC2,CD=12m,S草坪=SRtABC+SRtACD=ABBC+ACDC =(34+512)=36 m2故需要的费用为36100=3600元212121

    20、5.如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长.DABCEF解:在RtABF中,由勾股定理,得 BF2=AF2AB2=10282BF=6(cm).CF=BCBF=4.设EC=x,则EF=DE=8x,在RtECF中,根据勾股定理,得 x2+42=(8x)2解得 x=3.所以EC的长为3 cm.探索勾股定理勾股定理的验证课堂小结课堂小结勾股定理的简单运用小魔方站作品小魔方站作品 盗版必究盗版必究语文语文附赠 中高考状元学习方法 前前 言言 高考状元是一个特殊的群体,在许多高考状元是一个特殊的群体,在许多人的眼中,他们就如浩瀚宇宙里璀璨夺

    21、目人的眼中,他们就如浩瀚宇宙里璀璨夺目的星星那样遥不可及。但实际上他们和我的星星那样遥不可及。但实际上他们和我们每一个同学都一样平凡而普通,但他们们每一个同学都一样平凡而普通,但他们有是不平凡不普通的,他们的不平凡之处有是不平凡不普通的,他们的不平凡之处就是在学习方面有一些独到的个性,又有就是在学习方面有一些独到的个性,又有着一些共性,而这些对在校的同学尤其是着一些共性,而这些对在校的同学尤其是将参加高考的同学都有一定的借鉴意义。将参加高考的同学都有一定的借鉴意义。青春风采北京市文科状元北京市文科状元 阳光女孩阳光女孩-何旋何旋 高考总分:高考总分:692分分(含含20分加分分加分)语文语文1

    22、31分分 数学数学145分分英语英语141分分 文综文综255分分毕业学校:北京二中毕业学校:北京二中报考高校:报考高校:北京大学光华管理学北京大学光华管理学院院来自北京二中,高考成绩672分,还有20分加分。“何旋给人最深的印象就是她的笑声,远远的就能听见她的笑声。”班主任吴京梅说,何旋是个阳光女孩。“她是学校的摄影记者,非常外向,如果加上20分的加分,她的成绩应该是692。”吴老师说,何旋考出好成绩的秘诀是心态好。“她很自信,也很有爱心。考试结束后,她还问我怎么给边远地区的学校捐书”。班主任:我觉得何旋今天取得这样的成绩,我觉得,很重要的是,何旋是土生土长的北京二中的学生,二中的教育理念是

    23、综合培养学生的素质和能力。我觉得何旋,她取得今天这么好的成绩,一个来源于她的扎实的学习上的基础,还有一个非常重要的,我觉得特别想提的,何旋是一个特别充满自信,充满阳光的这样一个女孩子。在我印象当中,何旋是一个最爱笑的,而且她的笑特别感染人的。所以我觉得她很阳光,而且充满自信,这是她突出的这样一个特点。所以我觉得,这是她今天取得好成绩当中,心理素质非常好,是非常重要的。高考总分高考总分:711分分毕业学校毕业学校:北京八中北京八中语文语文139分分 数学数学140分分英语英语141分分 理综理综291分分报考高校:报考高校:北京大学光华管理学院北京大学光华管理学院北京市理科状元杨蕙心北京市理科状元杨蕙心

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:勾股定理的应用省优获奖课 公开课一等奖课件 公开课一等奖课件.ppt
    链接地址:https://www.163wenku.com/p-5164174.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库