勾股定理大赛获奖精美课件公开课一等奖课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《勾股定理大赛获奖精美课件公开课一等奖课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 大赛 获奖 精美 课件 公开 一等奖
- 资源描述:
-
1、171勾股定理勾股定理第1课时勾股定理(1)了解勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算重点勾股定理的内容和证明及简单应用难点勾股定理的证明一、创设情境,引入新课让学生画一个直角边分别为3 cm和4 cm的直角ABC,用刻度尺量出斜边的长再画一个两直角边分别为5和12的直角ABC,用刻度尺量出斜边的长你是否发现了3242与52的关系,52122与132的关系,即324252,52122132,那么就有勾2股2弦2.对于任意的直角三角形也有这个性质吗?由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜
2、想毕达哥拉斯发现了什么?拼图实验,探求新知1多媒体课件演示教材第2223页图17.12和图17.13,引导学生观察思考2组织学生小组合作学习问题:每组的三个正方形之间有什么关系?试说一说你的想法引导学生用拼图法初步体验结论生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和师:这只是猜想,一个数学命题的成立,还要经过我们的证明归纳验证,得出定理(1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2b2c2.(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学
3、家赵爽是怎样证明这个定理的用多媒体课件演示小组合作探究:a以直角三角形ABC的两条直角边a,b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗?b它们的面积分别怎样表示?它们有什么关系?c利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法想一想还有什么方法?师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦四、课堂小结1本节课学到了什么数学知识?2你了解了勾股定理的发现和验证方法了吗?3你还有什么困惑?本节课的设计关注学生是否积极参与探索勾股定理的活动,关注学生能否在活
4、动中积极思考、能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理地表达活动过程和所获得的结论等关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理 16.216.2二次根式的乘除 第2课时二次根式的除法1创设情境,复习二次根式的乘法,旨在类比学习二次根式的除法,培养学生继续探究的兴趣2二次根式除法的学习过程,按照由特殊到一般的规律,由学生经历思考、讨论、分析的过程,让学生大胆猜测,使学生在交流中体会成功16.216.2二次根式的乘除 第2课时二次根式的除法1创设情境,复习二次根式的乘法,旨在类比学习二次根式的除法,培养学生继续探究的兴趣2二次根式除法的学习过程
5、,按照由特殊到一般的规律,由学生经历思考、讨论、分析的过程,让学生大胆猜测,使学生在交流中体会成功小魔方站作品小魔方站作品 盗版必究盗版必究语文语文附赠附赠 中高考状元学习方法中高考状元学习方法 前前 言言 高考状元是一个特殊的群体,在许多高考状元是一个特殊的群体,在许多人的眼中,他们就如浩瀚宇宙里璀璨夺目人的眼中,他们就如浩瀚宇宙里璀璨夺目的星星那样遥不可及。但实际上他们和我的星星那样遥不可及。但实际上他们和我们每一个同学都一样平凡而普通,但他们们每一个同学都一样平凡而普通,但他们有是不平凡不普通的,他们的不平凡之处有是不平凡不普通的,他们的不平凡之处就是在学习方面有一些独到的个性,又有就是
展开阅读全文