34 简单的图案设计 大赛获奖课件 公开课一等奖课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《34 简单的图案设计 大赛获奖课件 公开课一等奖课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 34 简单的图案设计 大赛获奖课件 公开课一等奖课件 简单 图案 设计 大赛 获奖 课件 公开 一等奖
- 资源描述:
-
1、3.4 简单的图案设计导入新课讲授新课当堂练习课堂小结第三章 图形的平移与旋转学习目标1.利用旋转、轴对称或平移进行简单的图案设计.(重点)2.认识和欣赏平移、旋转在现实生活中的应用.3.灵活运用平移与旋转组合的方式进行一些图案设计.(难点)导入新课导入新课问题:经过一波三折,东京奥组公布了2020年东京夏季奥运会新会徽,名为“组合市松纹”的方案最终胜出.据称,该方案的设计灵感源自在日本江户时代颇为流行的西洋跳棋黑白棋盘格,加入了日本传统的靛蓝色彩,体现出精致又优雅的日式风情.说一说图案中的奥运五环可以通过其中一个圆怎样变化而得到?讲授新课讲授新课分析构成图案的基本图形一例例1 试说出构成下列
2、图形的基本图形典例精析(1)(2)(3)(4)基本图形(1)(2)(3)(4)想一想:看成轴对称时基本图形是什么?对于这三种图形变换一般从定义区分即可分清图形变换的几个最基本概念是解题的关键方法归纳分析图形形成过程二例2 分析下列图形的形成过程(1)(2)(3)(4)分析图案的形成过程分析图案的形成过程 图形的变换可以通过选择不同的变换方式得到,可能需要旋转、轴对称、平移等多种变换组合才能得到完美的图案,希望同学们认真分析,精心设计出漂亮的图案来方法归纳图案的设计三 例3 下面花边中的图案以正方形为基础,由圆弧、圆或线段构成.仿照例图,请你为班级的板报设计一条花边.要求:(1)只要画出组成花边
3、的一个图案;(2)以所给的正方形为基础,用圆弧、圆或线段画出;(3)图案应有美感.参考图案例4 怎样用圆规画出这个六花瓣图?这样的作图对你有所启发吗?画完之后请同学们思考以下几个问题:图中A点的位置对六花瓣的形状有没有影响?对花瓣的位置有影响吗?(对形状没影响,对位置有影响)在读清要求后,然后根据要求,进行方案的尝试设计,一般要经历一个不断修改的过程,使问题在修正中得以解决方法归纳图案设计欣赏四运动美运动美 组合美当堂练习当堂练习 用直尺,圆规,三角尺再设计一个新颖的(课堂上未见过的)美丽图案.课堂小结课堂小结图案的设计分析图案设计分清基本图形知道形成过程设计方法利用图形变换轴对称平 移旋 转
4、动手设计赏析悦目的图案见学练优本课时练习课后作业课后作业1.3 线段的垂直平分线第一章 三角形的证明导入新课讲授新课当堂练习课堂小结 第1课时 线段的垂直平分线 1.理解线段垂直平分线的概念;2.掌握线段垂直平分线的性质定理及逆定理;(重点)3.能运用线段的垂直平分线的有关知识进行证明或计算.(难点)学习目标导入新课导入新课问题引入某区政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问该购物中心应建于何处,才能使得它到三个小区的距离相等?ABC观察:已知点A与点A关于直线l 对称,如果线段AA沿直线l折叠,则点A与点A重合,AD=AD,1=2=90,即直线l 既平分
5、线段AA,又垂直线段AA.lAAD21(A)讲授新课讲授新课线段垂直平分线的性质一 我们把垂直且平分一条线段的直线叫作这条线段的垂直平分线.由上可知:线段是轴对称图形,线段的垂直平分线是它的对称轴.知识要点如图,直线l垂直平分线段AB,P1,P2,P3,是l 上的点,请你量一量线段P1A,P1B,P2A,P2B,P3A,P3B的长,你能发现什么?请猜想点P1,P2,P3,到点A 与点B 的距离之间的数量关系ABlP1P2P3探究发现P1A _P1BP2A _ P2BP3A _ P3B 作关于直线l 的轴反射(即沿直线l 对折),由于l 是线段AB的垂直平分线,因此点A与点B重合.从而线段PA与
6、线段PB重合,于是PA=PB.(A)(B)B APl活动探究 猜想:点P1,P2,P3,到点A 与点B 的距离分别相等 命题:线段垂直平分线上的点和这条线段两个端点的距离相等.由此你能得到什么结论?你能验证这一结论吗?如图,直线lAB,垂足为C,AC=CB,点P 在l 上求证:PA=PB证明:lAB,PCA=PCB又 AC=CB,PC=PC,PCA PCB(SAS)PA=PBPABlC验证结论微课-证明线段垂直平分线的性质 线段垂直平分线上的点到这条线段两个端点的距离相等.线段垂直平分线的性质定理:总结归纳例1 如图,在ABC中,ABAC20cm,DE垂直平分AB,垂足为E,交AC于D,若DB
7、C的周长为35cm,则BC的长为()A5cmB10cmC15cmD17.5cm典例精析C解析:DBC的周长为BCBDCD35cm,又DE垂直平分AB,ADBD,故BCADCD35cm.ACADDC20cm,BC352015(cm).故选C.方法归纳:利用线段垂直平分线的性质,实现线段之间的相互转化,从而求出未知线段的长练一练:1.如图所示,直线CD是线段AB的垂直平分线,点P为直线CD上的一点,且PA=5,则线段PB的长为()A.6 B.5 C.4 D.32.如图所示,在ABC中,BC=8cm,边AB的垂直平分线交AB于点D,交边AC于点E,BCE的周长等于18cm,则AC的长是 .B10cm
8、PABCD图图ABCDE图图定理:线段垂直平分线上的点到这条线段两个端点的距离相等.逆命题到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.它是真命题吗?你能证明吗?线段垂直平分线的判定二想一想:如果PA=PB,那么点P是否在线段AB的垂直平分线上呢?记得要分点P在线段AB上及线段AB外两种情况来讨论(1)当点P在线段AB上时,PA=PB,点P为线段AB的中点,显然此时点P在线段AB的垂直平分线上;(2)当点P在线段AB外时,如右图所示.PA=PB,PAB是等腰三角形.过顶点P作PCAB,垂足为点C,底边AB上的高PC也是底边AB上的中线.即 PCAB,且AC=BC.直线PC是线段AB
9、的垂直平分线,此时点P也在线段AB的垂直平分线上.微课-线段垂直平分线的逆命题 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.线段垂直平分线的性质定理的逆定理:应用格式:PA=PB,点P 在AB 的垂直平分线上PAB作用:判断一个点是否在线段的垂直平分线上.总结归纳例2:已知:如图ABC中,AB=AC,O是ABC内一点,且OB=OC.求证:直线AO垂直平分线段BC.证明:AB=AC,A在线段BC的垂直平分线(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).同理,点O在线段BC的垂直平分线.直线AO是线段BC的垂直平分线(两点确定一条直线).你还有其他证明方法吗?利用三角
10、形的全等证明证明:延长AO交BC于点D,ABAC,AOAO,OBOC ,ABOACO(SSS).BAO=CAO,AB=AC,AOBCOBOC ,ODOD ,RTDBORTDCO(HL).BDCD.直线AO垂直平分线段BC.试一试:已知:如图,点E是AOB的平分线上一点,ECOA,EDOB,垂足分别为C,D,连接CD.求证:OE是CD的垂直平分线.ABOEDC证明:OE平分AOB,ECOA,EDOB,DE=CE(角平分线上的点到角的两边的距离相等).OE是CD的垂直平分线.当堂练习当堂练习1.如图所示,AC=AD,BC=BD,则下列说法正确的是 ()AAB垂直平分CD;B CD垂直平分AB;CA
11、B与CD互相垂直平分;DCD平分 ACB A2.已知线段AB,在平面上找到三个点D、E、F,使DADB,EAEB,FAFB,这样的点的组合共有种.无数3.下列说法:若点P、E是线段AB的垂直平分线上两点,则EAEB,PAPB;若PAPB,EAEB,则直线PE垂直平分线段AB;若PAPB,则点P必是线段AB的垂直平分线上的点;若EAEB,则经过点E的直线垂直平分线段AB其中正确的有 (填序号).4.如图,ABC中,AB=AC,AB的垂直平分线交AC于E,连接BE,AB+BC=16cm,则BCE的周长是 cm.ABCDE165.已知:如图,点C,D是线段AB外的两点,且AC=BC,AD=BD,AB
展开阅读全文