书签 分享 收藏 举报 版权申诉 / 61
上传文档赚钱

类型273 相似三角形应用举例 公开课一等奖课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5163326
  • 上传时间:2023-02-15
  • 格式:PPT
  • 页数:61
  • 大小:2.98MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《273 相似三角形应用举例 公开课一等奖课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    273 相似三角形应用举例 公开课一等奖课件 相似 三角形 应用 举例 公开 一等奖 课件
    资源描述:

    1、学习目标1.能够利用相似三角形的知识,求出不能直接测量 的物体的高度和宽度.(重点)2.进一步了解数学建模思想,能够将实际问题转化 为相似三角形的数学模型,提高分析问题、解决 问题的能力.(难点)乐山大佛导入新课导入新课图片引入世界上最高的树 红杉台湾最高的楼 台北101大楼怎样测量这些非常高大的物体的高度?世界上最宽的河 亚马逊河怎样测量河宽?利用相似三角形可以解决一些不能直接测量的物体的高度及两物之间的距离问题.利用相似三角形测量高度一讲授新课讲授新课 据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高

    2、度.例1 如图,木杆 EF 长 2 m,它的影长 FD 为3m,测得 OA 为 201 m,求金字塔的高度 BO.怎样测出OA 的长?解:太阳光是平行的光线,因此 BAO=EDF.又 AOB=DFE=90,ABO DEF.,BOOAEFFD 201 23OA EFBOFD=134(m).因此金字塔的高度为134 m.表达式:物1高:物2高=影1长:影2长测高方法一:测量不能到达顶部的物体的高度,可以用“在同一时刻物高与影长成正比例”的原理解决.归纳:1.如图,要测量旗杆 AB 的高度,可在地面上竖一根竹竿 DE,测量出 DE 的长以及 DE 和 AB 在同一时刻下地面上的影长即 可,则下面能用

    3、来求AB长的等 式是 ()A B C D CABEFDEBCABDEEFBCABBCDEEFABACDEDF练一练2.如图,九年级某班数学兴趣小组的同学想利用所学 数学知识测量学校旗杆的高度,当身高 1.6 米的楚 阳同学站在 C 处时,他头顶端的影子正好与旗杆 顶端的影子重合,同一时刻,其他成员测得 AC=2 米,AB=10 米,则旗杆的高度是_米 8AFEBO还可以有其他测量方法吗?OBEF=OAAFABOAEFOB=OA EFAF平面镜想一想:测高方法二:测量不能到达顶部的物体的高度,也可以用“利用镜子的反射测量高度”的原理解决.如图是小明设计用手电来测量某古城墙高度的示意图,点 P 处

    4、放一水平的平面镜,光线从点 A出发经平面镜反射后,刚好射到古城墙的顶端 C 处,已知 AB=2 米,且测得 BP=3 米,DP=12 米,那么该古城墙的高度是 ()A.6米 B.8米 C.18米 D.24米 B试一试:例2 如图,为了估算河的宽度,我们可以在河对岸选定一个目标点 P,在近岸取点 Q 和 S,使点 P,Q,S共线且直线 PS 与河垂直,接着在过点 S 且与 PS 垂直的直线 a 上选择适当的点 T,确定 PT 与过点 Q 且垂直 PS 的直线 b 的交点 R.已知测得QS=45 m,ST=90 m,QR=60 m,请根据这些数据,计算河宽 PQ.利用相似三角形测量宽度二PRQSb

    5、TaPQ90=(PQ+45)60.解得 PQ=90.因此,河宽大约为 90 m.解:PQR=PST=90,P=P,PQRPST.PRQSbTa ,PQQRPSST即 ,PQQRPQQSST604590PQPQ,还有其他构造相似三角形求河宽的方法吗?45m90m60m例3 如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点 A,再在河的这一边选点 B 和 C,使 ABBC,然后,再选点 E,使 EC BC,用视线确定 BC 和 AE 的交点 D 此时如果测得 BD120米,DC60米,EC50米,求两岸间的大致距离 ABEADCB60m50m120m解:ADBEDC,ABCECD90,A

    6、BDECD.,即 ,ABBDECDC1205060AB解得 AB=100.因此,两岸间的大致距离为 100 m.EADCB60m50m120m 测量如河宽等不易直接测量的物体的宽度,常构造相似三角形求解.归纳:例4 如图,左、右并排的两棵大树的高分别是 AB=8 m 和 CD=12 m,两树底部的距离 BD=5 m,一个人估计自己眼睛距离地面 1.6 m,她沿着正对这两棵树的一条水平直路 l 从左向右前进,当她与左边较低的树的距离小于多少时,就看不到右边较高的树的顶端C 了?利用相似解决有遮挡物问题三分析:如图,设观察者眼睛的位置(视点)为点 F,画出观察者的水平视线 FG,它交 AB,CD

    7、于点 H,K.视线 FA,FG 的夹角 AFH 是观察点 A 的仰角.类似地,CFK 是观察点 C 时的仰角,由于树的遮挡,区域和都在观察者看不到的区域(盲区)之内.再往前走就根本看不到 C 点了.由此可知,如果观察者继续前进,当她与左边的树的距离小于 8 m 时,由于这棵树的遮挡,就看不到右边树的顶端 C.解:如图,假设观察者从左向右走到点 E 时,她的眼 睛的位置点 E 与两棵树的顶端点 A,C 恰在一条 直线上 ABl,CDl,ABCD.AEHCEK.,EHAHEKCK8 1.66.4.512 1.610.4EHEH即解得 EH=8.1.小明身高 1.5 米,在操场的影长为 2 米,同时

    8、测得 教学大楼在操场的影长为 60 米,则教学大楼的高 度应为 ()A.45米 B.40米 C.90米 D.80米 当堂练习当堂练习2.小刚身高 1.7 m,测得他站立在阳光下的影子长为 0.85 m,紧接着他把手臂竖直举起,测得影子长 为 1.1 m,那么小刚举起的手臂超出头顶 ()A.0.5m B.0.55m C.0.6m D.2.2mAA3.如图,为了测量水塘边 A、B 两点之间的距离,在 可以看到 A、B 的点 E 处,取 AE、BE 延长线上的 C、D 两点,使得 CDAB.若测得 CD5 m,AD 15m,ED=3 m,则 A、B 两点间的距离为 m.ABEDC204.如图所示,有

    9、点光源 S 在平面镜上面,若在 P 点看 到点光源的反射光线,并测得 AB10 cm,BC 20 cm,PCAC,且 PC24 cm,则点光源 S 到平 面镜的距离 SA 的长度为 .12 cm5.如图,某校数学兴趣小组利用自制的直角三角形硬 纸板 DEF 来测量操场旗杆 AB 的高度,他们通过调 整测量位置,使斜边 DF 与地面保持平行,并使边 DE 与旗杆顶点 A 在同一直线上,已知 DE=0.5 米,EF=0.25 米,目测点 D 到地面的距离 DG=1.5 米,到旗杆的水平距离 DC=20 米,求旗杆的高度.ABCDGEFABCDGEF解:由题意可得:DEFDCA,DE=0.5米,EF

    10、=0.25米,DG=1.5米,DC=20米,则 .DEEFDCCA解得:AC=10,故 AB=AC+BC =10+1.5=11.5(m).答:旗杆的高度为 11.5 m.0.50.2520CA,6.如图,某一时刻,旗杆 AB 的影子的一部分在地面 上,另一部分在建筑物的墙面上小明测得旗杆 AB 在地面上的影长 BC 为 9.6 m,在墙面上的影 长 CD 为 2 m同一时刻,小明又测得竖立于地面 长 1 m 的标杆的影长为 1.2 m请帮助小明求出旗 杆的高度ABCDE解:如图:过点 D 作 DEBC,交 AB 于点 E,DE=CB=9.6 m,BE=CD=2 m,在同一时刻物高与影长成正比例

    11、,EA:ED=1:1.2,AE=8 m,AB=AE+EB=8+2=10(m),学校旗杆的高度为 10 m.ABCD相似三角形的应用举例利用相似三角形测量高度课堂小结课堂小结利用相似三角形测量宽度利用相似解决有遮挡物问题1.能熟练地画出物体的三视图和由三视图想象出物 体形状,进一步提高空间想象能力.(难点)2.由三视图想象出立体图形后能进行简单的面积或 体积的计算.(重点)学习目标导入新课导入新课如图所示是一个立体图形的三视图,(1)请根据视图说出立体图形的名称,并画出它的展 开图.(2)请指出三视图、立体图形、展开图之间的对应边.复习引入讲授新课讲授新课三视图的有关计算分析:1.应先由三视图想

    12、象出 ;2.画出物体的 .密封罐的立体形状展开图例1 某工厂要加工一批密封罐,设计者给出了密封罐的三视图,请你按照三视图确定制作每个密封罐所需钢板的面积(图中尺寸单位:mm).合作探究解:由三视图可知,密封罐的形状是正六棱柱.50mm50mm密封罐的高为50mm,底面正六边形的直径为100mm,边长为50mm,100mm如图,是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为2216 50 50+2 650 50sin60236 501+27990(mm)2 1.三种图形的转化:三视图立体图展开图2.由三视图求立体图形的面积的方法:(1)先根据给出的三视图确定立体图形,并确定 立体图形

    13、的长、宽、高.(2)将立体图形展开成一个平面图形(展开图),观察它的组成部分.(3)最后根据已知数据,求出展开图的面积.归纳:主视图左视图俯视图8813 如图是一个几何体的三视图根据图示,可计算出该几何体的侧面积为 104 练一练例2 如图是一个几何体的三视图,根据所示数据,求该几何体的表面积和体积.分析:由三视图可知该几何体是由圆柱、长方体组合而成.分别计算它们的表面积和体积,然后相加即可.解:该图形上、下部分分别是圆柱、长方体,根据图 中数据得:表面积为2032+30402+25402+25302=(5 900+640)(cm2),体积为253040+10232=(30 000+3 200

    14、)(cm3).一个机器零件的三视图如图所示(单位:cm),这个机器零件是一个什么样的立体图形?它的体积是多少?1510121510主视图左视图俯视图解:长方体,其体积为101215=1800(cm3).练一练1.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为 ()A.6 B.8 C.12 D.24当堂练习当堂练习B2.如图是一个几何体的三视图,根据图中提供的数据 (单位:cm),可求得这个几何体的体积为 .3 cm3主视图 左视图 俯视图3 1 1 3.如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为 cm2.2 4.如图是一个由若干个棱长为1cm的正方体

    15、构成的几何 体的三视图 (1)请写出构成这个几何体的正方体的个数为 ;(2)计算这个几何体的表面积为 520cm25.如图是一个几何体的三视图,试描绘出这个零件的 形状,并求出此三视图所描述的几何体的表面积.解:该几何体的表面积为22+222+1/244=20.6.某一空间图形的三视图如图所示,其中主视图是半 径为1的半圆以及高为 1 的矩形;左视图是半径为1 的四分之一圆以及高为1的矩形;俯视图是半径为1 的圆,求此图形的体积(参考公式:V球 R3)43解:由已知可得该几何体是一个下部为圆柱,上部为 1/4球的组合体由三视图可得,下部圆柱的底面 半径为1,高为1,则V圆柱,上部1/4球的半径

    16、 为1,则V1/4球/3,故此几何体的体积为4/3.课堂小结课堂小结1.三种图形的转化:2.由三视图求立体图形的体积(或面积)的方法:(1)先根据给出的三视图确定立体图形,并确定立 体图形的长、宽、高、底面半径等;(2)根据已知数据,求出立体图形的体积(或将立 体图形展开成一个平面图形,求出展开图的面 积).三视图立体图展开图小魔方站作品小魔方站作品 盗版必究盗版必究语文语文附赠 中高考状元学习方法 前前 言言 高考状元是一个特殊的群体,在许多高考状元是一个特殊的群体,在许多人的眼中,他们就如浩瀚宇宙里璀璨夺目人的眼中,他们就如浩瀚宇宙里璀璨夺目的星星那样遥不可及。但实际上他们和我的星星那样遥

    17、不可及。但实际上他们和我们每一个同学都一样平凡而普通,但他们们每一个同学都一样平凡而普通,但他们有是不平凡不普通的,他们的不平凡之处有是不平凡不普通的,他们的不平凡之处就是在学习方面有一些独到的个性,又有就是在学习方面有一些独到的个性,又有着一些共性,而这些对在校的同学尤其是着一些共性,而这些对在校的同学尤其是将参加高考的同学都有一定的借鉴意义。将参加高考的同学都有一定的借鉴意义。青春风采北京市文科状元北京市文科状元 阳光女孩阳光女孩-何旋何旋 高考总分:高考总分:692分分(含含20分加分分加分)语文语文131分分 数学数学145分分英语英语141分分 文综文综255分分毕业学校:北京二中毕

    18、业学校:北京二中报考高校:报考高校:北京大学光华管理学北京大学光华管理学院院来自北京二中,高考成绩672分,还有20分加分。“何旋给人最深的印象就是她的笑声,远远的就能听见她的笑声。”班主任吴京梅说,何旋是个阳光女孩。“她是学校的摄影记者,非常外向,如果加上20分的加分,她的成绩应该是692。”吴老师说,何旋考出好成绩的秘诀是心态好。“她很自信,也很有爱心。考试结束后,她还问我怎么给边远地区的学校捐书”。班主任:我觉得何旋今天取得这样的成绩,我觉得,很重要的是,何旋是土生土长的北京二中的学生,二中的教育理念是综合培养学生的素质和能力。我觉得何旋,她取得今天这么好的成绩,一个来源于她的扎实的学习上的基础,还有一个非常重要的,我觉得特别想提的,何旋是一个特别充满自信,充满阳光的这样一个女孩子。在我印象当中,何旋是一个最爱笑的,而且她的笑特别感染人的。所以我觉得她很阳光,而且充满自信,这是她突出的这样一个特点。所以我觉得,这是她今天取得好成绩当中,心理素质非常好,是非常重要的。高考总分高考总分:711分分毕业学校毕业学校:北京八中北京八中语文语文139分分 数学数学140分分英语英语141分分 理综理综291分分报考高校:报考高校:北京大学光华管理学院北京大学光华管理学院北京市理科状元杨蕙心北京市理科状元杨蕙心

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:273 相似三角形应用举例 公开课一等奖课件.ppt
    链接地址:https://www.163wenku.com/p-5163326.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库