273 相似三角形应用举例 公开课一等奖课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《273 相似三角形应用举例 公开课一等奖课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 273 相似三角形应用举例 公开课一等奖课件 相似 三角形 应用 举例 公开 一等奖 课件
- 资源描述:
-
1、学习目标1.能够利用相似三角形的知识,求出不能直接测量 的物体的高度和宽度.(重点)2.进一步了解数学建模思想,能够将实际问题转化 为相似三角形的数学模型,提高分析问题、解决 问题的能力.(难点)乐山大佛导入新课导入新课图片引入世界上最高的树 红杉台湾最高的楼 台北101大楼怎样测量这些非常高大的物体的高度?世界上最宽的河 亚马逊河怎样测量河宽?利用相似三角形可以解决一些不能直接测量的物体的高度及两物之间的距离问题.利用相似三角形测量高度一讲授新课讲授新课 据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高
2、度.例1 如图,木杆 EF 长 2 m,它的影长 FD 为3m,测得 OA 为 201 m,求金字塔的高度 BO.怎样测出OA 的长?解:太阳光是平行的光线,因此 BAO=EDF.又 AOB=DFE=90,ABO DEF.,BOOAEFFD 201 23OA EFBOFD=134(m).因此金字塔的高度为134 m.表达式:物1高:物2高=影1长:影2长测高方法一:测量不能到达顶部的物体的高度,可以用“在同一时刻物高与影长成正比例”的原理解决.归纳:1.如图,要测量旗杆 AB 的高度,可在地面上竖一根竹竿 DE,测量出 DE 的长以及 DE 和 AB 在同一时刻下地面上的影长即 可,则下面能用
3、来求AB长的等 式是 ()A B C D CABEFDEBCABDEEFBCABBCDEEFABACDEDF练一练2.如图,九年级某班数学兴趣小组的同学想利用所学 数学知识测量学校旗杆的高度,当身高 1.6 米的楚 阳同学站在 C 处时,他头顶端的影子正好与旗杆 顶端的影子重合,同一时刻,其他成员测得 AC=2 米,AB=10 米,则旗杆的高度是_米 8AFEBO还可以有其他测量方法吗?OBEF=OAAFABOAEFOB=OA EFAF平面镜想一想:测高方法二:测量不能到达顶部的物体的高度,也可以用“利用镜子的反射测量高度”的原理解决.如图是小明设计用手电来测量某古城墙高度的示意图,点 P 处
4、放一水平的平面镜,光线从点 A出发经平面镜反射后,刚好射到古城墙的顶端 C 处,已知 AB=2 米,且测得 BP=3 米,DP=12 米,那么该古城墙的高度是 ()A.6米 B.8米 C.18米 D.24米 B试一试:例2 如图,为了估算河的宽度,我们可以在河对岸选定一个目标点 P,在近岸取点 Q 和 S,使点 P,Q,S共线且直线 PS 与河垂直,接着在过点 S 且与 PS 垂直的直线 a 上选择适当的点 T,确定 PT 与过点 Q 且垂直 PS 的直线 b 的交点 R.已知测得QS=45 m,ST=90 m,QR=60 m,请根据这些数据,计算河宽 PQ.利用相似三角形测量宽度二PRQSb
5、TaPQ90=(PQ+45)60.解得 PQ=90.因此,河宽大约为 90 m.解:PQR=PST=90,P=P,PQRPST.PRQSbTa ,PQQRPSST即 ,PQQRPQQSST604590PQPQ,还有其他构造相似三角形求河宽的方法吗?45m90m60m例3 如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点 A,再在河的这一边选点 B 和 C,使 ABBC,然后,再选点 E,使 EC BC,用视线确定 BC 和 AE 的交点 D 此时如果测得 BD120米,DC60米,EC50米,求两岸间的大致距离 ABEADCB60m50m120m解:ADBEDC,ABCECD90,A
6、BDECD.,即 ,ABBDECDC1205060AB解得 AB=100.因此,两岸间的大致距离为 100 m.EADCB60m50m120m 测量如河宽等不易直接测量的物体的宽度,常构造相似三角形求解.归纳:例4 如图,左、右并排的两棵大树的高分别是 AB=8 m 和 CD=12 m,两树底部的距离 BD=5 m,一个人估计自己眼睛距离地面 1.6 m,她沿着正对这两棵树的一条水平直路 l 从左向右前进,当她与左边较低的树的距离小于多少时,就看不到右边较高的树的顶端C 了?利用相似解决有遮挡物问题三分析:如图,设观察者眼睛的位置(视点)为点 F,画出观察者的水平视线 FG,它交 AB,CD
7、于点 H,K.视线 FA,FG 的夹角 AFH 是观察点 A 的仰角.类似地,CFK 是观察点 C 时的仰角,由于树的遮挡,区域和都在观察者看不到的区域(盲区)之内.再往前走就根本看不到 C 点了.由此可知,如果观察者继续前进,当她与左边的树的距离小于 8 m 时,由于这棵树的遮挡,就看不到右边树的顶端 C.解:如图,假设观察者从左向右走到点 E 时,她的眼 睛的位置点 E 与两棵树的顶端点 A,C 恰在一条 直线上 ABl,CDl,ABCD.AEHCEK.,EHAHEKCK8 1.66.4.512 1.610.4EHEH即解得 EH=8.1.小明身高 1.5 米,在操场的影长为 2 米,同时
8、测得 教学大楼在操场的影长为 60 米,则教学大楼的高 度应为 ()A.45米 B.40米 C.90米 D.80米 当堂练习当堂练习2.小刚身高 1.7 m,测得他站立在阳光下的影子长为 0.85 m,紧接着他把手臂竖直举起,测得影子长 为 1.1 m,那么小刚举起的手臂超出头顶 ()A.0.5m B.0.55m C.0.6m D.2.2mAA3.如图,为了测量水塘边 A、B 两点之间的距离,在 可以看到 A、B 的点 E 处,取 AE、BE 延长线上的 C、D 两点,使得 CDAB.若测得 CD5 m,AD 15m,ED=3 m,则 A、B 两点间的距离为 m.ABEDC204.如图所示,有
9、点光源 S 在平面镜上面,若在 P 点看 到点光源的反射光线,并测得 AB10 cm,BC 20 cm,PCAC,且 PC24 cm,则点光源 S 到平 面镜的距离 SA 的长度为 .12 cm5.如图,某校数学兴趣小组利用自制的直角三角形硬 纸板 DEF 来测量操场旗杆 AB 的高度,他们通过调 整测量位置,使斜边 DF 与地面保持平行,并使边 DE 与旗杆顶点 A 在同一直线上,已知 DE=0.5 米,EF=0.25 米,目测点 D 到地面的距离 DG=1.5 米,到旗杆的水平距离 DC=20 米,求旗杆的高度.ABCDGEFABCDGEF解:由题意可得:DEFDCA,DE=0.5米,EF
展开阅读全文