271 平行线分线段成比例 公开课一等奖课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《271 平行线分线段成比例 公开课一等奖课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 271 平行线分线段成比例 公开课一等奖课件 平行线 线段 比例 公开 一等奖 课件
- 资源描述:
-
1、1.理解相似三角形的概念.2.理解平行线分线段成比例的基本事实及其推论,掌 握相似三角形判定定理的预备定理的有关证明.(重 点、难点)3.掌握平行线分线段成比例的基本事实及其推论的应 用,会用平行线判定两个三角形相似并进行证明和 计算.(重点、难点)学习目标导入新课导入新课复习引入1.相似多边形的对应角 ,对应边 ,对 应边的比叫做 .2.如图,ABC 和 ABC 相似需要满足什么条件?相等成比例相似比ABCABC相似用符号“”表示,读作“相似于”.ABC与ABC 相似记作“ABCABC”.讲授新课讲授新课平行线分线段成比例(基本事实)一 如图,小方格的边长都是1,直线 abc,分别交直线 m
2、,n于A1,A2,A3,B1,B2,B3.合作探究A1A2A3B1B2B3mnabc图A1A2A3B1B2B3mnabc (1)计算 ,你有什么发现?12122323A AB BA AB B,(2)将 b 向下平移到如图的位置,直线 m,n 与直线 b 的交点分别为 A2,B2.你在问题(1)中发现的结 论还成立吗?如果将 b 平移到其他位置呢?A1A2A3B1B2B3mnabc图(3)根据前两问,你认为在平面上任意作三条平行线,用它们截两条直线,截得的对应线段成比例吗?一般地,我们有平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.符号语言:若ab c,则 ,12
3、122323A AB BA AB B 归纳:A1A2A3B1B2B3bc23231212A AB BA AB B12121313A AB BA AB B,23231313A AB BA AB Ba1.如何理解“对应线段”?2.“对应线段”成比例都有哪些表达形式?想一想:如图,已知l1l2l3,下列比例式中错误的是 ()A.B.C.D.DFBDCEACBFBDAEACCEDFAEBFACBDBFAED练一练ACEBDFl2l1l3 如图,直线ab c,由平行线分线段成比例的基本事实,我们可以得出图中对应成比例的线段,平行线分线段成比例定理的推论二A1A2A3B1B2B3bcmna观察与思考把直线
4、 n 向左或向右任意平移,这些线段依然成比例.A1A2A3bcmB1B2B3na 直线 n 向左平移到 B1 与A1 重合的位置,说说图中有哪些成比例线段?把图中的部分线擦去,得到新的图形,刚刚所说的线段是否仍然成比例?A1(B1)A2A3B2B3()A1A2A3bcmB1B2B3na 直线 n 向左平移到 B2 与A2 重合的位置,说说图中有哪些成比例线段?把图中的部分线擦去,得到新的图形,刚刚所说的线段是否仍然成比例?A2(B2)A1A3B1B3()平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.A1(B1)A2A3B2B3A2(B2)A1A3B1B3 归纳:如图
5、,DEBC,则 ;FGBC,则 .ABAD52ACAE练一练25ABCEDFG2CGAGABAF23例1 如图,在ABC中,EFBC.(1)如果E、F分别是 AB 和 AC 上的点,AE=BE=7,FC=4 ,那么 AF 的长是多少?ABCEF典例精析解:AEAFBEFC,774AF,解得 AF=4.(2)如果AB=10,AE=6,AF=5,那么 FC 的长是多 少?ABCEF解:AEAFABAC,6510AC,解得 AC=.253 FC=ACAF=.2510533 如图,DEBC,AD=4,DB=6,AE=3,则AC=;FGBC,AF=4.5,则AG=.ABCEDFG练一练7.56 如图,在
6、ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.问题1 ADE与ABC的三个角分别相等吗?问题2 分别度量ADE与ABC的边长,它们的边 长是否对应成比例?BCADE相似三角形的引理三合作探究问题3 你认为ADE与ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?BCADE通过度量,我们发现ADEABC,且只要DEBC,这个结论恒成立.想一想:BCADE 我们通过度量三角形的边长,知道ADEABC,但要用相似的定义去证明它,我们需要证明什么?由前面的结论,我们可以得到什么?还需证明什么?,而除 DE 外,其他的线段都在ABC 的边上,要想利用前面学到的结论来证明
7、三角形相似,需要怎样做呢?BCADE 由前面的结论可得ADAEABAC,需要证明的是ADAEDEABACBC可以将 DE 平移到BC 边上去证明:在 ADE与 ABC中,A=A.DEBC,ADE=B,AED=C.如图,过点 D 作 DFAC,交 BC 于点 F.CABDEF用相似的定义证明ADEABC DEBC,DFAC,.ADAEADCFABACABCB,四边形DFCE为平行四边形,DE=FC,ADEABC.=ADAEDEABACBC,由此我们得到判定三角形相似的定理:平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似.三角形相似的两种常见类型:“A”型“X”型 DEABCA
8、BCDE1.已知:如图,ABEFCD,图中共有_对相似 三角形.3练一练CDABEFO相似具有传递性2.若 ABC 与 ABC 相似,一组对应边的长为AB=3 cm,AB=4 cm,那么ABC与 ABC 的相似比是_.433.若 ABC 的三条边长的比为3cm,5cm,6cm,与其相似的另一个 ABC 的最小边长为12 cm,那么 ABC 的最大边长是_.24 cm当堂练习当堂练习1.如图,ABCDEF,相似比为1:2,若 BC=1,则 EF 的长为 ()A.1 B.2 C.3 D.4BCAEFDB2.如图,在 ABC 中,EFBC,AE=2cm,BE=6cm,BC=4 cm,EF 长 ()A
9、A.1cm B.cm C.3cm D.2cmABCEF433.如图,在 ABC中,DEBC,则_,对应边的比例式为 ADABAEACDEBCADEABCBCADE4.已知 ABC A1B1C1,相似比是 1:4,A1B1C1 A2B2C2,相似比是1:5,则ABC与A2B2C2的 相似比为 .1:205.如图,在 ABCD 中,EFAB,DE:EA=2:3,EF=4,求 CD 的长 解:EFAB,DE:EA=2:3,DACBEF 即DEEFADAB,DEF DAB,245AB,解得 AB=10.又 四边形 ABCD 为,CD=AB=10.6.如图,已知菱形 ABCD 内接于AEF,AE=5cm
展开阅读全文