平行四边形的性质公开课一等奖课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《平行四边形的性质公开课一等奖课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行四边形 性质 公开 一等奖 课件
- 资源描述:
-
1、181平行四边形平行四边形181.1平行四边形的性质第1课时平行四边形的性质(1)理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质重点平行四边形的定义,平行四边形对角、对边相等的性质以及性质的应用难点运用平行四边形的性质进行有关的论证和计算一、复习导入1师:我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象生:平行四边形师:平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?生:自动伸缩门、挂衣服的简易衣钩等师:你能总结出平行四边形的定义吗?(小组讨论,教师总结)(1)定义:两组对边分别平行的四边形是平行四边形(2)表示:平行四边形用符号
2、“”来表示如图,在四边形ABCD中,ABDC,ADBC,那么四边形ABCD是平行四边形平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”ABDC,ADBC,四边形ABCD是平行四边形(判定);四边形ABCD是平行四边形,ABDC,ADBC(性质)2探究师:平行四边形是一种特殊的四边形,它除了具有四边形的性质和两组对边分别平行的性质外,还有什么特殊的性质呢?我们一起来探究一下(1)由定义知道,平行四边形的对边平行根据平行线的性质可知,在平行四边形中,相邻的角互为补角(2)猜想平行四边形的对边相等、对角相等下面证明这个结论的正确性如图,已知:ABCD.求证:ABCD,CBAD,BD,B
3、ADBCD.分析:作四边形ABCD的对角线AC,它将平行四边形分成ABC和CDA,证明这两个三角形全等即可得到结论证明:连接AC,ABCD,ADBC,13,24.又ACCA,ABCCDA(ASA)ABCD,CBAD,BD.由上面的证明可知:13,24,1423,BADBCD.由此得到:平行四边形的性质1平行四边形的对边相等平行四边形的性质2平行四边形的对角相等二、新课教授【例】教材第42页例1师:距离是几何中的重要度量之一,前面我们已经学习了点与点之间的距离、点到直线的距离在此基础上,我们结合平行四边形的概念和性质,介绍平行线之间的距离如图1,ab,cd,c,d与a,b分别相交于A,B,C,D
4、四点由平行四边形的概念和性质可知,四边形ABDC是平行四边形,ABCD.也就是说,两条平行线之间的任何两条平行线段都相等从上面的结论可以知道,如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离如图2,ab,A是a上的任意一点,ABb,B是垂足,线段AB的长就是a,b之间的距离三、巩固练习1ABCD中,A比B大20,则C的度数为()A60B80C100D120【答案】C2在下列图形的性质中,平行四边形不一定具有的是()A对角相等 B对角互补C邻角互补 D内角和是360【答案】B3在ABCD中,如果EFAD
5、,GHCD,EF与GH相交于点O,那么图中的平行四边形一共有()A4个B6个C8个D9个【答案】D四、课堂小结1两组对边分别平行的四边形叫做平行四边形2平行四边形的性质:对边平行;对边相等;对角相等我在设计本节课时先让学生看图形,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作和教师演示旋转得到其他性质因为本章课标明确要求学生能够规范地写出说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程小魔方站作品小魔方站作品 盗版必究盗版必究语文语文附赠附赠 中高考状元学习方法中高考状元学习方法 前前 言言
展开阅读全文