书签 分享 收藏 举报 版权申诉 / 37
上传文档赚钱

类型五年高考3年模拟§26-函数与方程课件.pptx

  • 上传人(卖家):晟晟文业
  • 文档编号:5158808
  • 上传时间:2023-02-15
  • 格式:PPTX
  • 页数:37
  • 大小:588.72KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《五年高考3年模拟§26-函数与方程课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    年高 模拟 26 函数 方程 课件
    资源描述:

    1、2.6函数与方程高考理数高考理数(课标专用)A组 统一命题课标卷题组考点函数与方程1.(2018课标全国,9,5分)已知函数f(x)=g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.-1,0)B.0,+)C.-1,+)D.1,+)e,0,ln,0,xxx x五年高考答案答案 C本题主要考查函数的零点及函数的图象.g(x)=f(x)+x+a存在2个零点等价于函数f(x)=与h(x)=-x-a的图象存在2个交点,如图,当x=0时,h(0)=-a,由图可知要满足y=f(x)与y=h(x)的图象存在2个交点,需要-a1,即a-1.故选C.e,0,ln,0 xxx x方法总结

    2、方法总结已知函数零点的个数求参数范围的方法:已知函数零点的个数求参数范围,常利用数形结合法将其转化为两个函数的图象的交点个数问题,需准确画出两个函数的图象,利用图象写出满足条件的参数范围.2.(2017课标全国,11,5分,0.526)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,则a=()A.-B.C.D.1121312答案答案 C由函数f(x)有零点得x2-2x+a(ex-1+e-x+1)=0有解,即(x-1)2-1+a(ex-1+e-x+1)=0有解,令t=x-1,则上式可化为t2-1+a(et+e-t)=0,即a=.令h(t)=,易得h(t)为偶函数,又由f(x)

    3、有唯一零点得函数h(t)的图象与直线y=a有唯一交点,则此交点的横坐标为0,所以a=,故选C.21eettt21eettt1 02123.(2014课标,11,5分,0.394)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x00,则a的取值范围是()A.(2,+)B.(1,+)C.(-,-2)D.(-,-1)答案答案 C解法一:取a=-2,则f(x)=-2x3-3x2+1,因为f(-1)=-2(-1)3-3(-1)2+1=0,所以-1是函数f(x)的零点,所以a-2,排除D;取a=3,则f(x)=3x3-3x2+1,因为f(-1)=-3-3+1=-50,所以函数f(x

    4、)在(-1,0)上有零点,排除A,B.故选C.解法二:(1)当a=0时,显然f(x)有两个零点,不符合题意.(2)当a0时,f(x)=3ax2-6x,令f(x)=0,解得x1=0,x2=.当a0时,0,所以函数f(x)=ax3-3x2+1在(-,0)与上为增函数,在上为减函数,因为f(x)存在唯一零点x0,且x00,则f(0)0,即10,不成立.当a0时,0,则f0,即a-3+10,解得a2或a-2,又因为a0,故a的取值范围为(-,-2).选C.2a2a2,a20,a2a2,a2,0a2a38a24a4.(2018课标全国,15,5分)函数f(x)=cos在0,的零点个数为 .36x答案答案

    5、3解析解析本题考查函数与方程.令f(x)=0,得cos=0,解得x=+(kZ).当k=0时,x=;当k=1时,x=;当k=2时,x=,又x0,所以满足要求的零点有3个.36x3k994979考点函数与方程考点函数与方程1.(2017山东,10,5分)已知当x0,1时,函数y=(mx-1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,12,+)B.(0,13,+)C.(0,2,+)D.(0,3,+)x3232B B组组 自主命题自主命题省省(区、市区、市)卷题组卷题组答案答案 B当01时,在同一平面直角坐标系中作出函数y=(mx-1)2与y=+m的图象,如图.xx

    6、要满足题意,则(m-1)21+m,解得m3或m0(舍去),m3.综上,正实数m的取值范围为(0,13,+).方法总结方法总结已知函数有零点(方程有根或图象有交点)求参数的值或取值范围常用的方法:直接法:直接根据题设条件构建关于参数的方程或不等式,再通过解方程或不等式确定参数的值或取值范围.分离参数法:先将参数分离,转化成求函数最值问题加以解决.数形结合法:在同一平面直角坐标系中画出函数的图象,然后数形结合求解.2.(2015天津,8,5分)已知函数f(x)=函数g(x)=b-f(2-x),其中bR.若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是()A.B.C.D.22|,2,(2)

    7、,2,xxxx7,47,470,47,24答案答案 D由已知条件可得g(x)=函数y=f(x),y=g(x)的图象如图所示:要使y=f(x)-g(x)恰有4个零点,只需y=f(x)与y=g(x)的图象恰有4个不同的交点,需满足在x0时有两个不同的解,即x2+x+2-b=0有两个不同的负根,则解得b2时有两个不同的解,即x2-5x+8-b=0有两个大于2的不同实根,令22|2|,0,0.bx xbxx 22,yxybx14(2)0,20,bb 742(2),22yxybxh(x)=x2-5x+8-b,需即解得b2.综上所述,满足条件的b的取值范围是b0,且a1)在R上单调递减,且关于x的方程|f

    8、(x)|=2-x恰有两个不相等的实数解,则a的取值范围是()A.B.C.D.2(43)3,0,log(1)1,0axaxaxxx20,32 3,3 41 2,3 334 1 2,3 334 答案答案 C要使函数f(x)在R上单调递减,只需解之得a,因为方程|f(x)|=2-x恰有两个不相等的实数解,所以直线y=2-x与函数y=|f(x)|的图象有两个交点.如图所示.易知y=|f(x)|的图象与x轴的交点的横坐标为-1,又-12,故由图可知,直线y=2-x与y=|f(x)|的图象在x0时有一个交点;当直线y=2-x与y=x2+(4a-3)x+3a(x0,函数f(x)=若关于x的方程f(x)=ax

    9、恰有2个互异的实数解,则a的取值范围是 .222,0,22,0.xaxa xxaxa x答案答案(4,8)解析解析本题主要考查函数零点的应用.设g(x)=f(x)-ax=方程f(x)=ax恰有2个互异的实数解即函数y=g(x)有两个零点,即y=g(x)的图象与x轴有2个交点,满足条件的y=g(x)的图象有以下两种情况:情况一:则4a-1,函数f(x)的零点个数即为函数y=sin 2x与y=|ln(x+1)|(x-1)的图象的交点个数.分别作出两个函数的图象,如图,可知有两个交点,则f(x)有两个零点.6.(2014江苏,13,5分)已知f(x)是定义在R上且周期为3的函数,当x0,3)时,f(

    10、x)=.若函数y=f(x)-a在区间-3,4上有10个零点(互不相同),则实数a的取值范围是 .2122xx答案答案 10,2解析解析当x0,3)时,f(x)=,由f(x)是周期为3的函数,作出f(x)在-3,4上的图象,如图.由题意知方程a=f(x)在-3,4上有10个不同的根.由图可知a.2122xx21(1)2x10,2评析评析本题考查函数零点及周期性等知识,解题关键是正确地作出函数f(x)在-3,4上的图象,有一定的难度.7.(2015江苏,13,5分)已知函数f(x)=|ln x|,g(x)=则方程|f(x)+g(x)|=1实根的个数为 .20,01,|4|2,1,xxx答案答案4解

    11、析解析由|f(x)+g(x)|=1可得f(x)+g(x)=1,即g(x)=-f(x)1,则原问题等价于函数y=g(x)与y=-f(x)+1或y=g(x)与y=-f(x)-1的图象的交点个数问题,在同一坐标系中作出y=g(x),y=-f(x)+1及y=-f(x)-1的图象,如下:由图可知,函数y=g(x)的图象与函数y=-f(x)+1的图象有2个交点,与函数y=-f(x)-1的图象有2个交点,则方程|f(x)+g(x)|=1实根的个数为4.8.(2014天津,14,5分)已知函数f(x)=|x2+3x|,xR.若方程f(x)-a|x-1|=0恰有4个互异的实数根,则实数a的取值范围为 .答案答案

    12、(0,1)(9,+)解析解析记g(x)=a|x-1|,则g(x)的图象过定点(1,0).原方程恰有四个互异的实数根,则f(x)与g(x)的图象恰有四个不同交点,故a0.分以下三种情况:i)四个交点的横坐标均小于1.由得x2+(3-a)x+a=0,由1=(3-a)2-4a0得a9舍去).故0a1时恰有四个交点.ii)三个交点的横坐标小于1,一个交点的横坐标大于1.则y=a(1-x)与y=-x2-3x(-3x1)也相切,解得a=1且a=9,此种情形不存在.iii)两个交点的横坐标小于1,另两个交点的横坐标大于1.由得x2+(3-a)x+a=0,由2=(3-a)2-4a0得a9(a9时恰有四个交点.

    13、综上,a(0,1)(9,+).2(1),3yaxyxx 2(1),3ya xyxx评析评析本题考查方程的根的个数问题.一般采用数形结合的方法转化为曲线的交点个数问题.要充分考虑各种情形,本题难度较高.C C组组 教师专用题组教师专用题组考点函数与方程考点函数与方程1.(2013安徽,10,5分)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x)2+2af(x)+b=0的不同实根个数是()A.3 B.4 C.5 D.6答案答案 A f(x)=3x2+2ax+b,由题意知x1,x2为f(x)=0的两不等实根.则3(f(x)2+2af(x)+b=

    14、0的解为f(x)=x1或f(x)=x2.不妨设x1x2,则f(x)=x1有两解,f(x)=x2只有一解.故原方程共有3个不同实根.2.(2013课标全国,10,5分,0.526)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.x0R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-,x0)单调递减D.若x0是f(x)的极值点,则f(x0)=0答案答案 C由三次函数值域为R知f(x)=0有解,所以A项正确;因为y=x3的图象为中心对称图形,而f(x)=x3+ax2+bx+c的图象可以由y=x3的图象平移得到,故B项正确

    15、;若f(x)有极小值点,则f(x)=0有两个不等实根x1,x2(不妨设x1x2),f(x)=3x2+2ax+b=3(x-x1)(x-x2),则f(x)在(-,x1)上为增函数,在(x1,x2)上为减函数,在(x2,+)上为增函数,故C项错误;D项正确.故选C.3.(2015湖南,15,5分)已知函数f(x)=若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是 .32,.xxaxxa答案答案(-,0)(1,+)解析解析当a1时,f(x)的图象如图所示,bb当b(a2,a3时,函数g(x)=f(x)-b有两个零点,分别是x1=,x2=.综上,a(-,0)(1,+).3bb考点函

    16、数与方程考点函数与方程1.(2017贵州荔波二模,8)已知函数f(x)=则函数y=f(x)的零点个数是()A.0 B.1 C.2 D.3221,0,log,0,xxx xA A组组 2016201820162018年高考模拟年高考模拟基础题组基础题组三年模拟答案答案 C令f(x)=0,得或解得x=-1或x=1.20,10 xx 20,log0,xx2.(2018四川乐山一中1月月考,10)已知函数f(x)=(aR),若函数f(x)在R上有两个零点,则a的取值范围是()A.(-,-1)B.(-,0)C.(-1,0)D.-1,0)e,0,21,0 xa xxx答案答案 D显然x=是函数的一个零点.

    17、由题意,得ex+a=0,即a=-ex有一个非正实数根,x(-,0,0ex1,则-1a0,得x1,f(x)在上单调递增;令f(x)0,得1xe,f(x)在(1,e)上单调递减,f(x)有最大值,f(x)最大值=f(1)=-1,f=-2-,f(e)=2-e2,且f(e)f,方程-a=2ln x-x2在上有解等价于2-e2-a-1.从而a的取值范围为1,e2-2.故选B.1,ee2x2(1)(1)xxx1e1e1,1e1e21e1e1,ee5.(2017云南玉溪质检三,12)已知函数f(x)=(kR),若函数y=|f(x)|+k有三个零点,则实数k的取值范围是 ()A.k2 B.-1k0C.-2k0

    18、,则函数y=|f(x)|+k无零点,若k=0,则函数y=|f(x)|+k只有1个零点,故k0,g(x)在1,+)上是增函数,g(x)min=g(1)=e2,函数y=f(x)-|x-1|-kx在1,+)上没有零点时,ke2.当0 x1时,e2x=1-x+kx=(k-1)x+1,当x0时,f(x)=e2x,f(x)=2e2x,过点(0,1)的切线斜率为2,由题意得k-12,k30,所以g(t)在(0,+)上是增函数,又g(1)=1,所以t=1,所以f(x)=1+ln x,而f(x)=,所以方程可化为ln x-=0,记h(x)=ln x-(x0),而h(x)=+0,所以h(x)在(0,+)上是增函数

    19、,又h(1)0,所以方程的解在区间(1,2)内.1t1x1x1x1x21x2.(2017广西南宁三模,8)函数f(x)=2x|log0.5x|-1的零点个数为 ()A.1 B.2 C.3 D.4答案答案 B易知函数f(x)=2x|log0.5x|-1的零点个数方程|log0.5x|=的根的个数函数y1=|log0.5x|与y2=的图象的交点个数.两个函数的图象如图所示,可知两个函数图象有两个交点,故选B.12x12x12x3.(2017云南昭通高三统测,12)设函数f(x)=若关于x的方程f(x)-loga(x+1)=0(a0且a1)在区间0,5内恰有5个不同的根,则实数a的取值范围是()A.

    20、(1,)B.(,+)C.(,+)D.(,)2(2),(1,),1|,1,1,f xxx x 3453453答案答案 C要使方程f(x)-loga(x+1)=0(a0且a1)在区间0,5内恰有5个不同的根,只需y=f(x)与y=loga(x+1)的图象在区间0,5内恰有5个不同的交点.显然a1,在同一坐标系内作出它们的图象(如图),要使它们在区间0,5内恰有5个不同的交点,只需得a,故选C.log 32,log 54,aa34.(2017广西南宁二中2月月考,12)已知函数f(x)=-x2-6x-3,g(x)=,已知实数m,n满足mn0),g(x)在(0,1)上递减,在(1,+)上递增,g(x)

    21、min=g(1)=2,g(x)的值域B=2,+),设A=y|y=f(x),xm,n,则由题可知AB,f(x)min2.又f(-5)=f(-1)=2,n-m的最大值为(-1)-(-5)=4.2e(1)exxx5.(2017四川巴中月考,12)已知函数f(x)=|xex|,方程f 2(x)-tf(x)+1=0(tR)有四个实数根,则t的取值范围为()A.B.C.D.2e1,e2e1,e 2e1,2e2e12,e答案答案 A设g(x)=xex,则g(x)=ex(x+1),g(x)在(-,-1)上递减,在(-1,+)上递增且g(x)min=g(x)极小=g(-1)=,又x-时g(x)0,x+时g(x)+,将g(x)的图象在x轴下方的部分上翻得如图所示f(x)的图象.令m=f(x),则m2-tm+1=0.y=m与y=f(x)的交点个数可以有一个,两个,三个.原方程有四个实数根,方程m2-tm+1=0有两个根m1,m2,且m1,m2,令h(m)=m2-tm+1,1e10emm或时1em时10em时10,e1,e则只需解得t.故选A.(0)0,10,ehh 2e1e

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:五年高考3年模拟§26-函数与方程课件.pptx
    链接地址:https://www.163wenku.com/p-5158808.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库