五年高考3年模拟§83-直线、平面垂直的判定与性质课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《五年高考3年模拟§83-直线、平面垂直的判定与性质课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年高 模拟 83 直线 平面 垂直 判定 性质 课件
- 资源描述:
-
1、8.3直线、平面垂直的判定与性质高考理数高考理数(课标专用)A A组组 统一命题统一命题课标卷题组课标卷题组考点线面垂直、面面垂直考点线面垂直、面面垂直1.(2018课标全国,18,12分)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把DFC折起,使点C到达点P的位置,且PFBF.(1)证明:平面PEF平面ABFD;(2)求DP与平面ABFD所成角的正弦值.五年高考解析解析(1)证明:由已知可得BFEF,又已知BFPF,且PF、EF平面PEF,PFEF=F,所以BF平面PEF,又BF平面ABFD,所以平面PEF平面ABFD.(2)作PHEF,垂足为H.由(1)得,P
2、H平面ABFD.以H为坐标原点,的方向为y轴正方向,|为单位长,建立如图所示的空间直角坐标系H-xyz.HFBF由(1)可得,DEPE.又DP=2,DE=1,所以PE=,又PF=1,EF=2,故PEPF,可得PH=,EH=,则H(0,0,0),P,D,=,=为平面ABFD的法向量.设DP与平面ABFD所成角为,则sin =.所以DP与平面ABFD所成角的正弦值为.3323230,0,231,02 DP331,22HP30,0,2|HP DPHP DP3433434易错警示易错警示利用空间向量求线面角的注意事项(1)先求出直线的方向向量与平面的法向量所夹的锐角(钝角时取其补角)的角度,再取其余角
3、即为所求.(2)若求线面角的余弦值,要注意利用平方关系sin2+cos2=1求出其值,不要误以为直线的方向向量与平面的法向量所夹角的余弦值为所求.2.(2016课标全国,19,12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将DEF沿EF折到DEF的位置,OD=.(1)证明:DH平面ABCD;(2)求二面角B-DA-C的正弦值.5410解析解析(1)证明:由已知得ACBD,AD=CD.又由AE=CF得=,故ACEF.因此EFHD,从而EFDH.(2分)由AB=5,AC=6得DO=BO=4.由EFAC得=.所以
4、OH=1,DH=DH=3.于是DH2+OH2=32+12=10=DO2,故DHOH.(4分)又DHEF,而OHEF=H,所以DH平面ABCD.(5分)(2)如图,以H为坐标原点,的方向为x轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D(0,0,3),AEADCFCD22ABAOOHDOAEAD14HF=(3,-4,0),=(6,0,0),=(3,1,3).(6分)设m=(x1,y1,z1)是平面ABD的法向量,则即所以可取m=(4,3,-5).(8分)设n=(x2,y2,z2)是平面ACD的法向量,ABACADAB0
5、,AD0,mm111113x4y0,3xy3z0,则即所以可取n=(0,-3,1).(10分)于是cos=-.sin=.因此二面角B-DA-C的正弦值是.(12分)AC0,AD0,nn22226x0,3xy3z0,|m nm n1450107 5252 95252 9525思路分析思路分析(1)利用已知条件及翻折的性质得出DHEF,利用勾股定理逆定理得出DHOH,从而得出结论;(2)在第(1)问的基础上建立恰当的空间直角坐标系,从而求出两个半平面的法向量,利用向量的夹角公式求其余弦值,从而求出正弦值,最后转化为二面角的正弦值.评析评析本题主要考查翻折问题,线面垂直的证明以及用空间向量法求解二面
6、角的基本知识和基本方法,考查学生的运算求解能力以及空间想象能力,求解各点的坐标是利用向量法解决空间问题的关键.3.(2017课标全国,19,12分)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,ABD=CBD,AB=BD.(1)证明:平面ACD平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.解析解析本题考查面面垂直的证明,二面角的求法.(1)证明:由题设可得,ABD CBD,从而AD=DC.又ACD是直角三角形,所以ADC=90.取AC的中点O,连接DO,BO,则DOAC,DO=AO.又由于ABC是正三
7、角形,故BOAC.所以DOB为二面角D-AC-B的平面角.在RtAOB中,BO2+AO2=AB2.又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故DOB=90.所以平面ACD平面ABC.(2)由题设及(1)知,OA,OB,OD两两垂直.以O为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系O-xyz.则A(1,0,0),B(0,0),C(-1,0,0),D(0,0,1).OAOA3由题设知,四面体ABCE的体积为四面体ABCD的体积的,从而E到平面ABC的距离为D到平面ABC的距离的,即E为DB的中点,得E.故=(-1,0,1),=(-2,0,0),=
8、.设n=(x,y,z)是平面DAE的法向量,则即可取n=.12123 10,22ADACAE3 11,22AD0,AE0,nn0,310.22xzxyz 31,13设m是平面AEC的法向量,则同理可取m=(0,-1,).则cos=.易知二面角D-AE-C为锐二面角,所以二面角D-AE-C的余弦值为.AC0,AE0.mm3|n mn m7777方法总结方法总结证明面面垂直最常用的方法是证明其中一个平面经过另一个平面的一条垂线,即在一个平面内,找一条直线,使它垂直于另一个平面.用空间向量法求二面角的余弦值时,要判断二面角是钝角还是锐角.4.(2016课标全国,18,12分)如图,在以A,B,C,D
9、,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,AFD=90,且二面角D-AF-E与二面角C-BE-F都是60.(1)证明:平面ABEF平面EFDC;(2)求二面角E-BC-A的余弦值.解析解析(1)证明:由已知可得AFDF,AFFE,所以AF平面EFDC.(2分)又AF平面ABEF,故平面ABEF平面EFDC.(3分)(2)过D作DGEF,垂足为G,由(1)知DG平面ABEF.以G为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系G-xyz.(6分)由(1)知DFE为二面角D-AF-E的平面角,故DFE=60,则|DF|=2,|DG|=,可得A(1,4,0)
10、,B(-3,4,0),E(-3,0,0),D(0,0,).GFGF33由已知得,ABEF,所以AB平面EFDC.(8分)又平面ABCD平面EFDC=CD,故ABCD,CDEF.由BEAF,可得BE平面EFDC,所以CEF为二面角C-BE-F的平面角,CEF=60.从而可得C(-2,0,).所以=(1,0,),=(0,4,0),=(-3,-4,),=(-4,0,0).(10分)设n=(x,y,z)是平面BCE的法向量,则即所以可取n=(3,0,-).设m是平面ABCD的法向量,则同理可取m=(0,4).则cos=-.故二面角E-BC-A的余弦值为-.(12分)3EC3EBAC3ABEC0,EB0
11、,nn30,40.xzy3AC0,AB0.mm3|n mn m2 19192 1919解题关键解题关键对于立体几何问题的求解,首先要熟练掌握平行与垂直的判定与性质,尤其是面面垂直的证明,寻找平面的垂线往往是几何证明的关键.利用空间向量求解二面角问题时,正确求出平面的法向量是关键.5.(2014课标,19,12分,0.428)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,ABB1C.(1)证明:AC=AB1;(2)若ACAB1,CBB1=60,AB=BC,求二面角A-A1B1-C1的余弦值.解析解析(1)证明:连接BC1,交B1C于点O,连接AO.因为侧面BB1C1C为菱形,所以B
12、1CBC1,且O为B1C及BC1的中点.又ABB1C,所以B1C平面ABO.由于AO平面ABO,故B1CAO.又B1O=CO,故AC=AB1.(2)因为ACAB1,且O为B1C的中点,所以AO=CO.又因为AB=BC,所以BOA BOC.故OAOB,从而OA,OB,OB1两两垂直.以O为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系O-xyz.因为CBB1=60,所以CBB1为等边三角形,又AB=BC,则A,B(1,0,0),B1,C.=,=,=.设n=(x,y,z)是平面AA1B1的法向量,OBOB30,0,330,0330,031AB330,3311ABAB31,0
13、,311BCBC31,03 则即所以可取n=(1,).设m是平面A1B1C1的法向量,则同理可取m=(1,-,).则cos=.易知二面角A-A1B1-C1为锐二面角,所以二面角A-A1B1-C1的余弦值为.111AB0,A B0,nn330,3330.3yzxz331111A B0,B C0.mm33|n mn m1717评析评析本题主要考查直线与平面垂直的判定定理与性质定理、二面角的求法、空间向量的应用等基础知识,考查空间想象能力、运算求解能力和推理论证能力.在建立空间直角坐标系之前,应有必要的证明过程,保证从O点引出的三条射线OA、OB、OB1两两垂直.B B组组 自主命题自主命题省省(区
14、、市区、市)卷题组卷题组考点线面垂直、面面垂直考点线面垂直、面面垂直1.(2014广东,7,5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1l2,l2l3,l3l4,则下列结论一定正确的是()A.l1l4 B.l1l4C.l1与l4既不垂直也不平行 D.l1与l4的位置关系不确定答案答案 D由l1l2,l2l3可知l1与l3的位置不确定,若l1l3,则结合l3l4,得l1l4,所以排除选项B、C,若l1l3,则结合l3l4,知l1与l4可能不垂直,所以排除选项A.故选D.评析评析本题考查了空间直线之间的位置关系,考查学生的空间想象能力、思维的严密性.2.(2018北京,16,1
15、4分)如图,在三棱柱ABC-A1B1C1中,CC1平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=,AC=AA1=2.(1)求证:AC平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.5解析解析(1)证明:在三棱柱ABC-A1B1C1中,因为CC1平面ABC,所以四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,所以ACEF.因为AB=BC,所以ACBE.所以AC平面BEF.(2)由(1)知ACEF,ACBE,EFCC1.又CC1平面ABC,所以EF平面ABC.因为BE平面ABC,所以EFBE.如图建立空间直角
16、坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).所以=(-1,-2,0),=(1,-2,1).设平面BCD的法向量为n=(x0,y0,z0),则即令y0=-1,则x0=2,z0=-4.BCBDBC0,BD0,nn00000 x2y0,x2yz0.于是n=(2,-1,-4).又因为平面CC1D的法向量为=(0,2,0),所以cos=-.由题知二面角B-CD-C1为钝角,所以其余弦值为-.(3)证明:由(2)知平面BCD的法向量为n=(2,-1,-4),=(0,2,-1).因为n=20+(-1)2+(-4)(-1)=20,所以直
17、线FG与平面BCD相交.EBEBEB|EB|nn21212121FGFG3.(2014福建,17,13分)在平面四边形ABCD中,AB=BD=CD=1,ABBD,CDBD.将ABD沿BD折起,使得平面ABD平面BCD,如图.(1)求证:ABCD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.解析解析(1)证明:平面ABD平面BCD,平面ABD平面BCD=BD,AB平面ABD,ABBD,AB平面BCD.又CD平面BCD,ABCD.(2)过点B在平面BCD内作BEBD,如图.由(1)知AB平面BCD,又BE平面BCD,ABBE.以B为坐标原点,分别以,的方向为x轴,y轴,z轴的正方向
18、建立空间直角坐标系.依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M,则=(1,1,0),=,=(0,1,-1).设平面MBC的法向量为n=(x0,y0,z0),则即取z0=1,得平面MBC的一个法向量为n=(1,-1,1).设直线AD与平面MBC所成角为,则sin=|cos|=,即直线AD与平面MBC所成角的正弦值为.BEBDBA1 10,2 2BCBM1 10,2 2ADBC0,BM0,nn0000 xy0,11yz0,22AD|AD|AD|nn6363评析评析要特别注意翻折前后图形中角、线、面等关系的变化.4.(2015浙江,17,15分)如图,在三棱
19、柱ABC-A1B1C1中,BAC=90,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D平面A1BC;(2)求二面角A1-BD-B1的平面角的余弦值.解析解析(1)证明:设E为BC的中点,由题意得A1E平面ABC,所以A1EAE.因为AB=AC,所以AEBC.故AE平面A1BC.由D,E分别为B1C1,BC的中点,得DEB1B且DE=B1B,从而DEA1A且DE=A1A,所以A1AED为平行四边形.故A1DAE.又因为AE平面A1BC,所以A1D平面A1BC.(2)解法一:作A1FBD且A1FBD=F,连接B1F.由AE=EB=,A1EA=
20、A1EB=90,得A1B=A1A=4.2由A1D=B1D,A1B=B1B,得A1DB与B1DB全等.由A1FBD,得B1FBD,因此A1FB1为二面角A1-BD-B1的平面角.由A1D=,A1B=4,DA1B=90,得BD=3,A1F=B1F=,由余弦定理得cosA1FB1=-.解法二:以CB的中点E为原点,分别以射线EA,EB为x,y轴的正半轴,建立空间直角坐标系E-xyz,如图所示.由题意知各点坐标如下:A1(0,0,),B(0,0),D(-,0,),B1(-,).2243181422142214因此=(0,-),=(-,-,),=(0,0).设平面A1BD的法向量为m=(x1,y1,z1
21、),平面B1BD的法向量为n=(x2,y2,z2).由即可取m=(0,1).由即可取n=(,0,1).于是|cos|=.由题意可知,所求二面角的平面角是钝角,故二面角A1-BD-B1的平面角的余弦值为-.1AB214BD22141DB21A0,BD0,mBm111112y14z0,2x2y14z0,71DB0,BD0,nn22222y0,2x2y14z0,7|m nmn18185.(2016北京,17,14分)如图,在四棱锥P-ABCD中,平面PAD平面ABCD,PAPD,PA=PD,ABAD,AB=1,AD=2,AC=CD=.(1)求证:PD平面PAB;(2)求直线PB与平面PCD所成角的正
22、弦值;(3)在棱PA上是否存在点M,使得BM平面PCD?若存在,求的值;若不存在,说明理由.5AMAP解析解析(1)证明:因为平面PAD平面ABCD,ABAD,所以AB平面PAD.所以ABPD.又因为PAPD,所以PD平面PAB.(2)取AD的中点O,连接PO,CO.因为PA=PD,所以POAD.又因为PO平面PAD,平面PAD平面ABCD,所以PO平面ABCD.因为CO平面ABCD,所以POCO.因为AC=CD,所以COAD.如图建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD的法向量为n=(x,
展开阅读全文