2010-2019十年高考数学真题分类汇编专题13 排列组合与二项式定理学生版+解析版.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2010-2019十年高考数学真题分类汇编专题13 排列组合与二项式定理学生版+解析版.docx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010-2019十年高考数学真题分类汇编专题13 排列组合与二项式定理学生版+解析版 2010 2019 十年 高考 数学 分类 汇编 专题 13 排列组合 二项式 定理 学生 解析 下载 _真题汇编_高考专区_政治_高中
- 资源描述:
-
1、1 十年高考真题分类汇编十年高考真题分类汇编(2010201020192019)数学)数学 专题专题 13 13 排列组合与二项式定理排列组合与二项式定理 一、选择题 1.(2019全国 3理 T4)(1+2x 2)(1+x)4的展开式中 x3的系数为( ) A.12 B.16 C.20 D.24 2.(2018全国 3理 T5) (x2+ 2 x) 5 的展开式中 x 4的系数为( ) A.10 B.20 C.40 D.80 3.(2017全国 1理 T6)(1 + 1 x2)(1+x) 6展开式中 x2的系数为( ) A.15 B.20 C.30 D.35 4.(2017全国 3理 T4)
2、(x+y)(2x-y) 5的展开式中 x3y3的系数为( ) A.-80 B.-40 C.40 D.80 5.(2017全国 2理 T6)安排 3 名志愿者完成 4 项工作,每人至少完成 1 项,每项工作由 1 人完成,则不同的 安排方式共有( ) A.12 种 B.18 种 C.24 种 D.36 种 6.(2016四川理 T2)设 i 为虚数单位,则(x+i) 6的展开式中含 x 4的项为( ) A.-15x 4 B.15x4 C.-20ix4 D.20ix4 7.(2016全国 2理 T5)如图,小明从街道的 E 处出发,先到 F 处与小红会合,再一起到位于 G 处的老年公寓 参加志愿者
3、活动,则小明到老年公寓可以选择的最短路径条数为( ) A.24 B.18 C.12 D.9 8.(2016全国 3理 T12)定义“规范 01 数列”an如下:an共有 2m项,其中m项为 0,m项为 1,且对任意 k2m,a1,a2,ak中 0 的个数不少于 1 的个数.若m=4,则不同的“规范 01 数列”共有( ) A.18 个 B.16 个 C.14 个 D.12 个 9.(2016四川理 T4)用数字 1,2,3,4,5 组成没有重复数字的五位数,其中奇数的个数为( ) A.24 B.48 2 C.60 D.72 10.(2015 四川 理 T6)用数字 0,1,2,3,4,5 组成
4、没有重复数字的五位数,其中比 40 000 大的偶数共有( ) A.144 个 B.120 个 C.96 个 D.72 个 11.(2015全国 1理 T10)(x 2+x+y)5的展开式中,x5y2的系数为( ) A.10 B.20 C.30 D.60 12.(2015陕西理 T4)二项式(x+1) n(nN*)的展开式中 x 2的系数为 15,则 n=( ) A.7 B.6 C.5 D.4 13.(2015湖北理 T3)已知(1+x) n的展开式中第 4 项与第 8 项的二项式系数相等,则奇数项的二项式系数 和为( ) A.2 12 B.2 11 C.2 10 D.29 14.(2014大
5、纲全国理 T5)有 6 名男医生、5 名女医生,从中选出 2 名男医生、1 名女医生组成一个医疗小 组,则不同的选法共有( ) A.60 种 B.70 种 C.75 种 D.150 种 15.(2014辽宁理 T6)6 把椅子摆成一排,3 人随机就座,任何两人不相邻的坐法种数为( ) A.144 B.120 C.72 D.24 16.(2014四川理 T6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共 有( ) A.192 种 B.216 种 C.240 种 D.288 种 17.(2014重庆理 T9)某次联欢会要安排 3 个歌舞类节目、2 个小品类节目和 1
6、个相声类节目的演出顺序, 则同类节目不相邻的排法种数是( ) A.72 B.120 C.144 D.168 18.(2014四川理 T2)在 x(1+x) 6的展开式中,含 x3项的系数为( ) A.30 B.20 C.15 D.10 19.(2014湖南理 T4) (1 2x-2y) 5 的展开式中 x 2y3的系数是( ) A.-20 B.-5 C.5 D.20 20.(2014 浙 江 理T5) 在 (1+x) 6(1+y)4 的 展 开 式 中 , 记x myn 项 的 系 数 为f(m,n), 则 f(3,0)+f(2,1)+f(1,2)+f(0,3)=( ) A.45 B.60 C
7、.120 D.210 3 21.(2013全国 1理 T9)设 m 为正整数,(x+y) 2m展开式的二项式系数的最大值为 a,(x+y)2m+1展开式的二项 式系数的最大值为 b.若 13a=7b,则 m=( ) A.5 B.6 C.7 D.8 22.(2013山东理 T10)用 0,1,9 十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.279 23.(2013全国 2理 T5)已知(1+ax)(1+x) 5的展开式中 x 2的系数为 5,则 a=( ) A.-4 B.-3 C.-2 D.-1 24.(2013辽宁理 T7)使(3x + 1 xx
8、) n (nN *)的展开式中含有常数项的最小的 n 为( ) A.4 B.5 C.6 D.7 25.(2013大纲全国理 T7)(1+x) 8(1+y)4的展开式中 x2y2的系数是( ) A.56 B.84 C.112 D.168 26.(2012湖北理 T5)设 aZ,且 0a13,若 51 2 012+a 能被 13 整除,则 a=( ) A.0 B.1 C.11 D.12 27.(2012安徽理 T7)(x 2+2) (1 x2 -1) 5 的展开式的常数项是( ) A.-3 B.-2 C.2 D.3 28.(2012全国理 T2)将 2 名教师,4 名学生分成 2 个小组,分别安排
9、到甲、乙两地参加社会实践活动,每 个小组由 1 名教师和 2 名学生组成,不同的安排方案共有( ) A.12 种 B.10 种 C.9 种 D.8 种 29.(2012辽宁理 T5)一排 9 个座位坐了 3 个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A.33! B.3(3!) 3 C.(3!)4 D.9! 30.(2012安徽理 T10)6 位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次, 进行交换的两位同学互赠一份纪念品.已知 6 位同学之间共进行了 13 次交换,则收到 4 份纪念品的同学人数 为( ) A.1 或 3 B.1 或 4 C.2 或 3 D
10、.2 或 4 31.(2011全国理 T8) (x + a x)(2x- 1 x) 5 的展开式中各项系数的和为 2,则该展开式中常数项为( ) A.-40 B.-20 C.20 D.40 32.(2010山东理 T8)某台小型晚会由 6 个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目 乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( ) A.36 种 B.42 种 C.48 种 D.54 种 4 二、填空题 1.(2019天津理 T10)(2x- 1 8x3 ) 8的展开式中的常数项为 2.(2018天津理 T10)在(x- 1 2x) 5 的展开式
11、中,x 2的系数为. 3.(2018浙江T14)二项式(x 3 + 1 2x) 8 的展开式的常数项是. 4.(2018上海T3)在(1+x) 7的二项展开式中,x2项的系数为 (结果用数值表示). 5.(2018全国 1理 T15)从 2 位女生,4 位男生中选 3 人参加科技比赛,且至少有 1 位女生入选,则不同的选 法共有 种.(用数字填写答案) 6.(2018浙江T16)从 1,3,5,7,9 中任取 2 个数字,从 0,2,4,6 中任取 2 个数字,一共可以组成 个没有 重复数字的四位数.(用数字作答) 7.(2017山东理 T11)已知(1+3x) n的展开式中含有 x2项的系数
12、是 54,则 n= . 8.(2017浙江T13)已知多项式(x+1) 3(x+2)2=x5+a 1x 4+a 2x 3+a 3x 2+a 4x+a5,则 a4= ,a5= . 9.(2017天津理 T14)用数字 1,2,3,4,5,6,7,8,9 组成没有重复数字,且至多有一个数字是偶数的四位数, 这样的四位数一共有 个.(用数字作答) 10.(2017浙江T16)从 6 男 2 女共 8 名学生中选出队长 1 人,副队长 1 人,普通队员 2 人组成 4 人服务队, 要求服务队中至少有 1 名女生,共有 种不同的选法.(用数字作答) 11.(2016全国 1理 T14)(2x+x) 5的
13、展开式中,x3的系数是 .(用数字填写答案) 12.(2016天津理 T10) (x2- 1 x) 8 的展开式中 x 7的系数为 .(用数字作答) 13.(2015广东理 T12)某高三毕业班有 40 人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写 了 条毕业留言.(用数字作答) 14.(2015天津理 T12)在(x- 1 4x) 6 的展开式中,x 2的系数为. 15.(2015重庆理 T12)(x3+ 1 2x) 5 的展开式中 x 8的系数是(用数字作答). 16.(2015全国 2理 T15)(a+x)(1+x) 4的展开式中 x 的奇数次幂项的系数之和为 32,则 a=
14、 . 17.(2014安徽理 T13)设 a0,n 是大于 1 的自然数, (1 + x a) n的展开式为 a 0+a1x+a2x 2+a nx n.若点 Ai(i,ai)(i=0,1,2)的位置如图所示,则 a= . 5 18.(2014北京理 T13)把 5 件不同产品摆成一排.若产品 A 与产品 B 相邻,且产品 A 与产品 C 不相邻,则不 同的摆法有 种. 19.(2014全国 1理 T13)(x-y)(x+y) 8的展开式中 x2y7的系数为 .(用数字填写答案) 20.(2014全国 2理 T13)(x+a) 10的展开式中,x7的系数为 15,则 a= .(用数字填写答案)
15、21.(2013浙江理 T11)设二项式(x- 1 x 3 ) 5 的展开式中常数项为 A,则 A= . 22.(2013北京理 T12)将序号分别为 1,2,3,4,5 的 5 张参观券全部分给 4 人,每人至少 1 张,如果分给同 一人的 2 张参观券连号,那么不同的分法种数是 . 23.(2013 大纲全国 理 T14)6 个人排成一行,其中甲、 乙两人不相邻的不同排法共有 种.(用数字作答) 24.(2013 浙江 理 T14)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有 种 (用数字作答). 25.(2012福建理 T11)(a+x) 4的展开式中
16、 x3的系数等于 8,则实数 a= . 26.(2012 浙江 理 T14)若将函数 f(x)=x 5表示为 f(x)=a 0+a1(1+x)+a2(1+x) 2+a 5(1+x) 5,其中 a 0,a1,a2,a5 为实数,则 a3= . 27.(2012大纲理 T15)若(x + 1 x) n 的展开式中第 3 项与第 7 项的二项式系数相等,则该展开式中 1 x2的系数 为. 28.(2011 北京 理 T12)用数字 2,3 组成四位数,且数字 2,3 至少都出现一次,这样的四位数共有 个.(用 数字作答) 6 十年高考真题分类汇编十年高考真题分类汇编(2010201020192019
17、)数学数学 专题专题 1313 排列组排列组合与二项式定理合与二项式定理 一、选择题 1.(2019全国 3理 T4)(1+2x 2)(1+x)4的展开式中 x3的系数为( ) A.12 B.16 C.20 D.24 【答案】A 【解析】(1+2x 2)(1+x)4的展开式中 x3的系数为C 4 3+2C41=4+8=12.故选 A. 2.(2018全国 3理 T5) (x2+ 2 x) 5 的展开式中 x 4的系数为( ) A.10 B.20 C.40 D.80 【答案】C 【解析】由展开式知 Tr+1=C5 r(x2)5-r(2x-1)r=C5r2rx10-3r.当 r=2 时,x4的系数
18、为C5222=40. 3.(2017全国 1理 T6)(1 + 1 x2)(1+x) 6展开式中 x2的系数为( ) A.15 B.20 C.30 D.35 【答案】C 【解析】(1+x) 6的二项展开式通项为 Tr+1=C6 xr,(1 + 1 2)(1+x) 6的展开式中含 x 2的项的来源有两部分,一部分 是 1C6 2x2=15x2,另一部分是1 2 C6 4x4=15x2,故(1 + 1 2)(1+x) 6的展开式中含 x 2的项为 15x2+15x2=30x2,其系数 是 30. 4.(2017全国 3理 T4)(x+y)(2x-y) 5的展开式中 x3y3的系数为( ) A.-8
19、0 B.-40 C.40 D.80 【答案】C 【解析】(2x-y) 5的展开式的通项公式 Tr+1=C5 (2x)5-r(-y)r. 当r=3 时,x(2x-y) 5的展开式中 x 3y3的系数为C 5 322(-1)3=-40; 当r=2 时,y(2x-y) 5的展开式中 x 3y3的系数为C 5 223(-1)2=80. 故展开式中x 3y3的系数为 80-40=40. 5.(2017全国 2理 T6)安排 3 名志愿者完成 4 项工作,每人至少完成 1 项,每项工作由 1 人完成,则不同的 安排方式共有( ) A.12 种 B.18 种 C.24 种 D.36 种 【答案】D 7 【解
20、析】先把 4 项工作分成 3 份有C4 2C21C11 A2 2 种情况,再把 3 名志愿者排列有A3 3种情况,故不同的安排方式共有 C4 2C21C11 A2 2 A3 3=36 种,故选 D. 6.(2016四川理 T2)设 i 为虚数单位,则(x+i) 6的展开式中含 x 4的项为( ) A.-15x 4 B.15x4 C.-20ix4 D.20ix4 【答案】A 【解析】二项式(x+i) 6展开的通项 Tr+1=C6 x6-rir,则其展开式中含 x 4是当 6-r=4,即 r=2,则展开式中含x 4的项 为C6 2x4i2=-15x4,故选 A. 7.(2016全国 2理 T5)如
21、图,小明从街道的 E 处出发,先到 F 处与小红会合,再一起到位于 G 处的老年公寓 参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( ) A.24 B.18 C.12 D.9 【答案】B 【解析】由题意知,小明从街道的 E 处出发到 F 处的最短路径有 6 条,再从 F 处到 G 处的最短路径有 3 条,则 小明到老年公寓可以选择的最短路径条数为 63=18,故选 B. 8.(2016全国 3理 T12)定义“规范 01 数列”an如下:an共有 2m项,其中m项为 0,m项为 1,且对任意 k2m,a1,a2,ak中 0 的个数不少于 1 的个数.若m=4,则不同的“规范 01
22、数列”共有( ) A.18 个 B.16 个 C.14 个 D.12 个 【答案】C 【解析】由题意知 a1=0,a8=1,则满足题意的 a1,a2,a8的可能取值如下: 8 综上可知,不同的“规范 01 数列”共有 14 个. 9.(2016四川理 T4)用数字 1,2,3,4,5 组成没有重复数字的五位数,其中奇数的个数为( ) A.24 B.48 C.60 D.72 【答案】D 【解析】要组成没有重复数字的五位奇数,则个位数应该为 1,3,5 中的一个,其他位置共有A4 4种排法,所以其 中奇数的个数为 3A4 4=72,故选 D. 10.(2015四川 理T6)用数字0,1,2,3,4
23、,5组成没有重复数字的五位数,其中比40 000大的偶数共有( ) A.144 个 B.120 个 C.96 个 D.72 个 【答案】B 【解析】当首位数字为 4,个位数字为 0 或 2 时,满足条件的五位数有 C2 1A43个;当首位数字为 5,个位数字为 0 或 2 或 4 时,满足条件的五位数有C31A43个.故满足条件的五位数共有 C2 1A43 + C3 1A43=(2+3)A43=54321=120 个.故选 B. 11.(2015全国 1理 T10)(x 2+x+y)5的展开式中,x5y2的系数为( ) A.10 B.20 C.30 D.60 【答案】C 【解析】(x 2+x+
展开阅读全文