测量学课件分解.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《测量学课件分解.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 测量学 课件 分解
- 资源描述:
-
1、第五章第五章 测量误差的基本知识测量误差的基本知识 测量实践中可以发现,测量结果不可避免的,比如:1、对同一量多次观测,其观测值不相同。2、观测值之和不等于理论值:三角形 +180 闭合水准 h0 误差误差就是就是观测值与客观真实值之差观测值与客观真实值之差。用重复观测的方法可以发现误差的存用重复观测的方法可以发现误差的存在。在。研究测量误差的目的是找出误差产生研究测量误差的目的是找出误差产生的原因,找出减弱误差的对策,保证的原因,找出减弱误差的对策,保证测量成果达到必需的精度。测量成果达到必需的精度。5.1 概述概述一、误差的来源一、误差的来源二、误差的分类二、误差的分类系统误差系统误差偶然
2、误差偶然误差定义定义特点特点消除办法消除办法一、测量误差来源一、测量误差来源 通常把测量仪器、观测者的技术水通常把测量仪器、观测者的技术水平和外界环境统称为平和外界环境统称为。:观测条件相同的各次观测。观测条件相同的各次观测。:观测条件不同的各次观测。观测条件不同的各次观测。定义:定义:在相同的观测条件下,对某量进行了在相同的观测条件下,对某量进行了n次观测,如果次观测,如果 产生的主要原因:产生的主要原因:是是仪器设备制造不完善。仪器设备制造不完善。二、系统误差二、系统误差 钢尺尺长、温度、倾斜改正 水准仪 i角 经纬仪 c角、i角 注意:系统误差具有累积性,对测量成果影响较大。1)用计算的
3、方法加以改正;(2)用一定的观测方法加以消除;(3)将系统误差限制在允许范围内。(校正仪器)三、偶然误差三、偶然误差 定义:定义:在相同的观测条件下,对某量进行了在相同的观测条件下,对某量进行了n次次观测,如果误差出现的观测,如果误差出现的,称为偶然误差(随机误差)。称为偶然误差(随机误差)。偶然误差不能消除,只能通过改善观测条偶然误差不能消除,只能通过改善观测条件加以控制。件加以控制。就单个值而言,偶然误差在观测前就单个值而言,偶然误差在观测前不能预知其大小和符号。但随着观不能预知其大小和符号。但随着观测次数的增多,偶然误差会呈现出测次数的增多,偶然误差会呈现出一定的一定的。三角形内角和观测
4、三角形内角和观测误差区间误差区间 为正为正 为负为负总数总数0.0 0.22121420.2 0.41919380.4 0.61512270.6 0.8911200.8 1.098171.0 1.256111.2 1.41341.4 1.61231.6以上以上000累计累计8082162偶然误差的特性:偶然误差的特性:有界性有界性 密集性密集性 对称性对称性 抵偿性:即抵偿性:即 频率直方图频率直方图每一误差区间上的长方形面积表示误差在该区间出现的相对个数。所有长方形面积之和等于1。密度函数法密度函数法误差概率分布曲线,也称为正态分布密度曲线。密度函数法密度函数法密度函数为密度函数为式中式中0
5、,表示与观测条件有关的参,表示与观测条件有关的参数。数。E()=0D()=2221()2fe 5.2衡量精度的指标衡量精度的指标 精密度(精度):指对一个量的多次观测中,各观测值之间的离散程度。精度高低主要取决于偶然误差的大小。偶然误差小,观测结果密集,精度高。偶然误差小,观测结果密集,精度高。评定精度的标准 中误差 容许误差 相对误差一、方差一、方差 设对某一未知量设对某一未知量x进行了进行了n次等精度的观次等精度的观测,其观测值为测,其观测值为l1、l2、ln,相应的相应的真误差为真误差为1、2、n,则定义该组观测则定义该组观测值的方差值的方差D为:为:limnDn式中 12+22+.+n
6、2 i=l iX(i1、2、3、.、n)X为未知量的真值。由于由于D 2 所以所以D。称为中误差,在数理统计中称为标准称为中误差,在数理统计中称为标准偏差。偏差。当当n为有限时,为有限时,的估值在测量中常用的估值在测量中常用m来代替。来代替。二、中误差二、中误差 中误差的定义:在相同观测条件下,对中误差的定义:在相同观测条件下,对同一未知量进行同一未知量进行n次观测,所得各个真误次观测,所得各个真误差平方的平均值,再取平方根,称为中差平方的平均值,再取平方根,称为中误差。用误差。用m表示。表示。nnmn22221.式中:例:试根据下表数据,分别计算各组观测值的中误差。解:第一组观测值的中误差:
7、解:第一组观测值的中误差:第二组观测值的中误差:第二组观测值的中误差:说明第一组的精度高于第二组的精度。说明第一组的精度高于第二组的精度。说明:中误差越小,观测精度越高说明:中误差越小,观测精度越高5.210)4(2)1()2(34)3(12022222222221 m2.310)1()3(017)1(0)6(2)1(22222222222 m21mm 相同观测条件下进行的一组观测,对应相同观测条件下进行的一组观测,对应的是同一种误差分布,即一组中的每一的是同一种误差分布,即一组中的每一个观测值都具有相同的精度。个观测值都具有相同的精度。中误差不等于每个观测值的真误差,而中误差不等于每个观测值
8、的真误差,而是一组真误差的代表值,代表了一组测是一组真误差的代表值,代表了一组测量结果中任一观测值的精度,通常把量结果中任一观测值的精度,通常把 m称为观测值中误差或一次观测中误差。称为观测值中误差或一次观测中误差。设有不同精度的两组观测值,对应的参设有不同精度的两组观测值,对应的参数为数为1和和2。设。设1 2,根据误差概率分,根据误差概率分布曲线,布曲线,1对应的曲线峰值比较高,曲对应的曲线峰值比较高,曲线陡峭;线陡峭;2对应的曲线峰值比较小,曲对应的曲线峰值比较小,曲线平缓,线平缓,说明说明值越小,观测精度越高。值越小,观测精度越高。中误差和真误差都是绝对误差,误中误差和真误差都是绝对误
9、差,误差的大小与观测量的大小无关。差的大小与观测量的大小无关。在有些情况下,中误差并不能全面在有些情况下,中误差并不能全面反映观测精度。反映观测精度。分别丈量两段不同距离,一段为分别丈量两段不同距离,一段为100m,一段为一段为200m,中误差都是,中误差都是 0.02m。此时。此时是否能认为两段距离观测结果的精度相是否能认为两段距离观测结果的精度相同?同?必须引入相对误差的概念,目的是为了必须引入相对误差的概念,目的是为了更客观地反映实际测量精度。更客观地反映实际测量精度。是中误差的绝对值 m 与相应观测值 D 之比,通常以分子为1的分式 来表示,称其为相对(中)误差。即:mDDmK1 :角
10、度、高差的误差用m表示,量距误差用K表示。三、相对误差三、相对误差例 已知:D1=100m,m1=0.01m,D2=200m,m2=0.01m,求:K1,K2解:20000120001.010000110001.0222111DmKDmK四、极限误差四、极限误差 根据偶然误差的第一个特性,在一定观根据偶然误差的第一个特性,在一定观测条件下,偶然误差的绝对值不会超过测条件下,偶然误差的绝对值不会超过一定的限值,该限值称为一定的限值,该限值称为,简,简称限差。称限差。限差是偶然误差限制值,用作观测成果限差是偶然误差限制值,用作观测成果取舍的标准。取舍的标准。理论和实验研究表明,大于两倍中误差的偶然
展开阅读全文