书签 分享 收藏 举报 版权申诉 / 64
上传文档赚钱

类型新编-Protein Interactions教学讲解课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5145412
  • 上传时间:2023-02-14
  • 格式:PPT
  • 页数:64
  • 大小:2.86MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《新编-Protein Interactions教学讲解课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    新编-Protein Interactions教学讲解课件 新编 Protein Interactions 教学 讲解 课件
    资源描述:

    1、Lecture 4.11Protein InteractionsMichel DumontierBlueprint Initiativemjdumontblueprint.org blueprint.org Lecture 4.12OutlineMolecular interactions Discovery Experimental Computational Storage Data Mining Future DirectionsLecture 4.13Molecular Interactions Between two molecular objects DNA,RNA,gene,pr

    2、otein,molecular complex,small molecule,photon Binding Sites Under an Experimental Condition With a particular Cellular Location Possibly causing some Chemical ActionBALecture 4.14Interaction DiscoveryExpression,Interaction Data,Function,Protein modificationsMicroarrayTwo-HybridMassSpectrometryGeneti

    3、csLecture 4.15A measure of confidence?How do you know if the interaction really exists?Each method has its advantages and disadvantages.Be aware of systematic errors(i.e.tag effects)Be aware of contaminating proteins.Each method observes interactions from a slightly different experimental condition.

    4、Support from many different sources is certainly better than just one.Lecture 4.16High-throughput Mass Spectrometric Protein Complex Identification(HMS-PCI)Ste12Ho et al.Nature.2019 Jan 10;415(6868):180-3Mike Tyers,SLRILecture 4.17Filtering Remove promiscuously binding proteins:Proteins identified b

    5、y MS in control lanes Proteins that were found at a high frequency in the overall experiment Known high-abundant proteins ribosomal elementsLecture 4.19Synthetic Genetic Interactions Synthetic genetic interactions(lethal,slow growth)Mate two mutants without phenotypes to get a daughter cell with a p

    6、henotype Synthetic lethal(SL),slow growth robotic mating using the yeast deletion library Genetic interactions provide functional data on protein interactions or redundant genes About 23%of known SLs(1295-YPD+MIPS)are known protein interactions in yeastTong et al.Science.2019 Dec 14;294(5550):2364-8

    7、Lecture 4.110Working overtimeCharlie Boones RobotsCell PolarityCell Wall Maintenance Cell StructureMitosisChromosome StructureDNA Synthesis DNA RepairUnknownOthersSynthetic Genetic Interactions in YeastTong,BooneLecture 4.112PreBIND Literature Mining PreBIND is a data mining tool that helps research

    8、ers locate biomolecular interaction information in the scientific literature.Start with a protein name or accession find abstracts with significant interaction information.Ranked list of potential interactors based on the number of high-scoring abstracts found and SVM score.Information is only avail

    9、able for yeast,mouse and human proteins described by NCBI RefSeq identifiersDonaldson et al.PreBIND and Textomy-mining the biomedical literature for protein-protein interactions using a support vector machine.BMC Bioinformatics.2019 Mar 27;4(1):11.Lecture 4.113Search PreBIND with“Chk1”Lecture 4.114V

    10、iew Possible InteractionsLecture 4.115View the abstractLecture 4.116Lecture 4.117Confirm and submit a BIND InteractionLecture 4.118Computational Interaction Prediction By Homology If A and B interact and C is homologous to A and D is homologous to B Do C and D interact?Transitive property They may,i

    11、f C&D are from the same species unless host-pathogen interaction Binding surface is conserved note domain interactions Binding residues are conserved Localize to the same cellular compartmentLecture 4.119OutlineMolecular interactions Discovery Storage Databases File Formats Data Mining Future Direct

    12、ionsLecture 4.120Information ScopeDBEvolutionary BiologyBiochemistryClinical StudiesChemistryBiophysicsBioinformaticsPharmacologyPopulation BiologyProteomicsEpidemiologyMolecular BiologyImmunologyGenomicsGeneticsLecture 4.121A free,open-source database for archiving and exchanging molecular assembly

    13、 information.BIND is managed by the Blueprint Initiative at Mount Sinai Hospital in Toronto.The database contains Interactions/Reactions Molecular complexes PathwaysBIND has an extensive data model,GNU software tools and is based on the NCBI toolkit;extended recently to XML/JavaThe 97000 BIND record

    14、s are curated and validated.bind.caBader GD,Betel D,Hogue CW.(2019)BIND:the Biomolecular Interaction Network Database.Nucleic Acids Res.31(1):248-50 PMID:12520193 Lecture 4.122Browse Interface(v2.5)Lecture 4.123BIND Submit Record View(v3.0)Lecture 4.124Publication LinksLecture 4.125OntoglyphsLecture

    15、 4.126Gene Ontology Functional protein annotation geneontology.org Controlled vocabulary for protein function and localization Molecular function e.g.DNA helicase Biological process e.g.mitosis Cellular Component e.g.nucleusLecture 4.127BIND Interaction Viewer 3.0Lecture 4.128Database of Interacting

    16、 Proteins(DIP)The DIP database catalogs experimentally determined interactions between proteins.It combines information from a variety of sources to create a single,consistent set of protein-protein interactions.The data stored within the DIP database were curated,both,manually by expert curators an

    17、d also automatically using computational approaches that utilize knowledge about the protein-protein interaction networks extracted from the most reliable,core subset of the DIP data.44349 interactions from 107 organisms involving 17048 proteinsSalwinski L,Miller CS,Smith AJ,Pettit FK,Bowie JU,Eisen

    18、berg D(2019)The Database of Interacting Proteins:2019 update.NAR 32 Database issue:D449-51dip.doe-mbi.ucla.eduCopyright 2019-2019 UCLAThe DIP database is the property of the Regents of the University of California.It is forbidden to redistribute,derivatize,or encapsulate the DIP in another database

    19、without permission from UCLA and David Eisenberg.Lecture 4.129DIP Search InterfaceLecture 4.130MINT MINT database v3.0.MINT is a relational database designed to store interactions between biological molecules.MINT focuses on experimentally verified protein interactions with special emphasis on prote

    20、omes from mammalian organisms.MINT consists of entries mined in the scientific literature by curators.The curated data can be analyzed in the context of the high throughput data and viewed graphically through the MINT Viewer.42534 Interactions with 18148 proteinsZanzoni A.,Montecchi-Palazzi L.,Quond

    21、am M.,Ausiello G.,Helmer-Citterich M.and Cesareni G.MINT:a Molecular INTeraction database.(2019)FEBS Letters,513(1);135-140.mint.bio.uniroma2.it/mint Lecture 4.131MINT Record ViewLecture 4.132MINT Interaction ViewerLecture 4.133Other Interaction Databases MIPS mips.gsf.de/proj/yeast/tables/interacti

    22、on/IntAct EBIs interaction database ebi.ac.uk/intact/Human Protein Interaction Database hpid.org/TRANSFAC transcription factors gene-regulation/General Repository for Interaction Sets(GRID)biodata.mshri.on.ca/grid/servlet/IndexLecture 4.134Data Exchange File Formats BIND bind.ca Peer reviewed but cl

    23、osed process(Spec v3.1)ASN.1 or XML DTD/Schema PSI-MI psidev.sourceforge Peer reviewed,HUPO community standard Widely adopted BioPax biopax.org Community schema(Sloan Kettering,BioPathways Consortium)XML Schema,OWL,Protg and GKB SBML Widely adopted for representing models of biochemical reaction net

    24、worksLecture 4.135BINDASN.1(text)XMLFlat FileLecture 4.136MINT PSI level 1Lecture 4.137PSI Record FormatLecture 4.138BioPAX Collaborative effort to create a data exchange format for biological pathway data biopax.org Lecture 4.139OutlineMolecular interactions Discovery Storage Data Mining Graph Theo

    25、ry Comparisons Visualization Tools Future DirectionsLecture 4.140Integrated Data Mining Determine new relationships between data.Identify non-obvious patterns Statistical clustering(e.g.microarray)Graph theoryLecture 4.141Graph TheoryVertex(node)EdgeCycle-5Directed Edge(Arc)Weighted Edge710We map mo

    26、lecular interaction networks to graphsLecture 4.142Useful Graph Operations A graph can be treated as a set of vertices and edges:intersection,difference,union e.g.What is the intersection of my interaction set with all known published interactions?Filtering e.g.Give me all protein interactions where

    27、 at least one partner is nuclear localized Overall statistics e.g.Find the average number of interactions for cell cycle proteinsLecture 4.143k-core A part of a graph where every node is connected to other nodes with at least k edges(k=0,1,2,3.)Highest k-core is a central most densely connected regi

    28、on of a graph Regions of dense connectivity may represent molecular complexes Therefore,high k-cores may be molecular complexesLecture 4.144k-coreBatagelj,V.,Mrvar,A.Lecture 4.145Spoke and Matrix Models Vrp1(bait),Las17,Rad51,Sla1,Tfp1,Ypt7SpokeMatrixSimple modelUseful for data navigationTheoretical

    29、 max.number of interactionsPossible ActualTopologyLecture 4.146Graph Visualization Visualize the connectivity of a given list of interactionsAde2Rad18Sed4Ybr134wAde6Ylr386wAde8Med4Soh1Bud31Adh2Yfl042cAhc1Ycr082wAip1Apc9Alr1Gcd7Pgd1Ygl024wYnl086wApg12Aut1Apg16Apg13Apg1Pup2Sec35Apg5Apg7Aut7Apm1Apl2Apm

    30、2Arh1Cdc39Gif1Arp10Arp1Atp20She2Bem4Scs3PajekLecture 4.147Graph Annotation ColouringGene Ontology Biological ProcessGO ProcessColourDNA metabolismBlueautophagyOrangecarbohydrate metabolismYellowcell cyclePurplecell organization and biogenesis Redgeneral metabolismBrownprotein biosynthesisCyanprotein

    31、 degradationPinkprotein transportMaroontranscriptionGraytransportGreenUnknownBlackLecture 4.148Stand-Alone Visualization Tools Cytoscape Visualize molecular interaction networks and integrate interactions with gene expression profiles and other state data.Data filters&custom plug-in architecture.cyt

    32、oscape.org/Osprey Visualization of complex interaction networks Data enriched with Gene Ontology&GRID db biodata.mshri.on.ca/osprey/servlet/Index Pajek General network analysis Used to analyze social,biological,web networks vlado.fmf.uni-lj.si/pub/networks/pajek/Lecture 4.149Compare HMS-PCI to Other

    33、 Large-scale Data Sets Co-Immunoprecipitation(CoIP)data Population of complexes of unknown topology Want to compare this data to pairwise interactions Must model CoIP as pairwise interactionsLecture 4.150Literature Benchmarks Manually curated collection of published interactions(not including large-

    34、scale experiments)MIPS-1353 interactions PreBIND-1196 YPD-2205 Combined,non-redundant-3310Is HMS-PCI Better?Compare to comprehensive high-throughput yeast two-hybrid(HT-Y2H)Ito et al.Uetz et al.Each set compared to a literature benchmark MIPS+PreBIND-1003 interactions with HMS-PCI baits HMS-PCI find

    35、s 2-3x more benchmark interactions than HT-Y2HDatasetInteractionsHMS-PCI Spoke166HMS-PCI Matrix214Ito et al.49Uetz et al.63Ito+Uetz86Ito et al.PNAS 98 p4569 2019&Uetz et al.Nature 403 p623 2000Another Large-scale MS StudyGavin et al.Ho et al.Overall MethodTAP/MALDI-TOF MSFLAG/LC-MS/MSTag Size200 ami

    36、no acids,C-terminal7 amino acids,C-terminalBait ExpressionEndogenous promoterEctopic;GAL1 or tet promoterCloningHomologousRecombination,chromosome basedGatewayTM Recombination,vectorbasedAttempted Number ofGenes Tagged1,739725Culture volume2L500mlAffinity Isolation methodTandem Affinity Purification

    37、ImmunoprecipitationUnique Bait ProteinsDetected as Expressed1,167600Affinity Isolation attempts5881,558(repeated baits)Mass SpectrometryMALDI-TOF MSLC-MS/MSProtein ID MethodPeptide Fragment MassMS/MS,SequenceMS samples20,94615,683Protein Ids16,83035,000Baits with Hits454493Filtered,Unique Proteins1,

    38、3631,578ContaminantFrequency Cutoff3.5%determinedempirically3.0%determined analyticallyTotal ProteinsExcluded66434Ho et al.Nature.2019 Jan 10;415(6868):180-3Gavin et al.Nature.2019 Jan 10;415(6868):141-7Ho-more sensitiveAdded info.for 446 proteinsComparing Data Sets Only 115 common baits(Ho 600;Gavi

    39、n 587)Ho vs.Gavin(spoke)198 interactions,222 proteins Ho+Gavin(matrix-44,680 intx)vs.all HT-Y2H(5 data sets-5614 intx):304 interactions,388 proteins Ho+Gavin(matrix)vs.benchmark(2078 interactions involving Ho+Gavin baits):693 interactions,619 proteins-33%Conclusion:Interaction data is not saturating

    40、Ho et al.Nature.2019 Jan 10;415(6868):180-3Gavin et al.Nature.2019 Jan 10;415(6868):141-7Ho vs.Gavin(spoke)Analysis of Combined Data Set Combine Ho,Gavin,previously known data-Whats new?Find protein complexes by finding k-cores MCODE software by Gary Bader&Chris Hogue Large nucleolar complex with fu

    41、nctional links to RNA processing,cell cycle control Nucleolus is the ribosome factory,but recently implicated in cell cycle control,RNA transport/processingAndersen et al.Curr Biol.2019 Jan 8;12(1):1-11Pre MSHoGavinUnion6-core6-core6-core9-coreInteraction can define function Lecture 4.157OutlineMole

    42、cular interactions Discovery Storage Data Mining Future DirectionsLecture 4.158Systems Biology Systems biology is the study of living organisms in terms of their underlying network structure as a function of the interactions of individual molecular components.Since a“system can be anything from a ge

    43、ne regulatory network to a cell,a tissue,or an entire organism,this approach requires the use and development of novel high throughput,sensitive and reliable analytical methods for the identification and characterization of genes,and/or their products,based on function.Lecture 4.159Systems Biology C

    44、urrent experimental methods such as mass spectrometry,microarray,NMR and microscopy will be instrumental in generating essential data that will require innovative computational approaches to manage and interpret the vast amounts of data required to understand complex biological systems.Lecture 4.160

    45、Space and Time resolved simulationsDorsal-Ventral Patterning in the Early Drosophila EmbryoMichaelis-Menten kineticsObserve dynamics of the network behaviorFor a simple transcription factor(TF)gene interaction TF+G G*,k1=binding coefficientG*+P-G*+P+nX,k2=transcription rate coefficientwhere P repres

    46、ents the RNA polymerase concentration,and X is the gene product concentration,n represents the number of X proteins per mRNA transcript The vertical scale is concentration in units of number of molecules.The horizontal coordinate is space,running from the ventral point to the dorsal point Each sampl

    47、e point represents a 10 micron bin.The total time course is,in physiological time,400 secsquad.bic.caltech.edu/kastner/drosophila.html Lecture 4.161E-Cell E-Cell system is an object-oriented software suite for modeling,simulation,and analysis of large scale complex systems such as biological cellse-

    48、cell.orgLecture 4.162Systems Biology WorkbenchThe Systems Biology Workbench(SBW)is a modular,broker-based,message-passing framework for simplified communication between applications that aid in research in systems biology.Support for Windows,FreeBSD and LinuxBidirectional CORBA-SBW gateway Collectio

    49、n of modules provided with the base distribution:Simple stochastic simulator An SBML-to-MATLAB ODE and Simulink file translator An SBML reader module A clipboard module for exchanging SBML models A Browser that outputs module interface definitions A simple plotting module for time-series data A gene

    50、ric simulation-control GUI interface sbw.sourceforge Lecture 4.163ConclusionSystems Biology Requirements:Parts List(Integrated Sequence And Structure DB)Molecular Interactions List(Biomolecular+Kinetics)Cellular Localization&Initial Concentrations Stochastic Simulation&Distributed computing infrastr

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:新编-Protein Interactions教学讲解课件.ppt
    链接地址:https://www.163wenku.com/p-5145412.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库