导数在实际生活中的应用课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《导数在实际生活中的应用课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 实际 生活 中的 应用 课件
- 资源描述:
-
1、3.4 导数在实际生活中的应用导数在实际生活中的应用宿迁青华中学宿迁青华中学 徐守高徐守高1 1、实际问题中的应用、实际问题中的应用.在日常生活、生产和科研中在日常生活、生产和科研中,常常会遇到求函数的常常会遇到求函数的最大最大(小小)值的问题值的问题.建立目标函数建立目标函数,然后利用导数的方法然后利用导数的方法求最值是求解这类问题常见的解题思路求最值是求解这类问题常见的解题思路.在建立目标函数时在建立目标函数时,一定要注意确定函数的定义域一定要注意确定函数的定义域.在实际问题中在实际问题中,有时会遇到函数在区间内只有一个有时会遇到函数在区间内只有一个点使点使 的情形的情形,如果函数在这个点
2、有极大如果函数在这个点有极大(小小)值值,那么不与端点值比较那么不与端点值比较,也可以知道这就是最大也可以知道这就是最大(小小)值值.这里所说的也适用于开区间或无穷区间这里所说的也适用于开区间或无穷区间.0)(xf满足上述情况的函数我们称之为满足上述情况的函数我们称之为“单峰函数单峰函数”.3、求最大(最小)值应用题的一般方法、求最大(最小)值应用题的一般方法(1)分析实际问题中各量之间的关系,把实际问题化分析实际问题中各量之间的关系,把实际问题化为数学问题,建立函数关系式,这是关键一步。为数学问题,建立函数关系式,这是关键一步。(2)确定函数定义域,并求出极值点。确定函数定义域,并求出极值点
3、。(3)比较各极值与定义域端点函数的大小,比较各极值与定义域端点函数的大小,结合实结合实际,确定最值或最值点。际,确定最值或最值点。2、实际应用问题的表现形式,常常不是、实际应用问题的表现形式,常常不是以纯数学模式反映出来。以纯数学模式反映出来。首先,通过审题,认识问题的背景,抽象出问题的实质。首先,通过审题,认识问题的背景,抽象出问题的实质。其次,建立相应的数学模型其次,建立相应的数学模型,将应用问题转化为数学问题将应用问题转化为数学问题,再解。再解。4.4.问题类型问题类型1.1.几何方面的应用几何方面的应用2.2.物理方面的应用物理方面的应用.3.3.经济学方面的应用经济学方面的应用(面
4、积和体积等的最值面积和体积等的最值)(利润方面最值利润方面最值)(功和功率等最值功和功率等最值)6060解解:设箱底边长为设箱底边长为x cm,箱子容积为箱子容积为V=x2 h例例1 在边长为在边长为60cm的正方形铁皮的四角切去相等的正方形,的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?边长为多少时,箱子容积最大?最大容积是多少?则箱则箱高高260 xh 26032xx xxV =60 x3x/2令令V =0,得,得x=40,x=0(舍去舍去)得得V(40)=
5、16000答:当答:当箱底边长为箱底边长为x=40时时,箱子容积最大,箱子容积最大,最大值为最大值为16000cm3)600(x;0()40,0()时,时,当当xVx.0()60,40()时,时,当当xVx。为为极极大大值值,且且为为最最大大值值)40(V 在实际问题中,如果函数在实际问题中,如果函数 f(x)在某区间内在某区间内只有一个只有一个x0 使使f (x0)=0,而且从实际问题本身又可而且从实际问题本身又可以知道函数在以知道函数在 这点有极大这点有极大(小小)值,那么不与端点值,那么不与端点比较,比较,f(x0)就是所求的最大值或最小值就是所求的最大值或最小值.(所说区间的也适用于开
6、区间或无穷区间所说区间的也适用于开区间或无穷区间)11年应用题是全卷的焦点年应用题是全卷的焦点请你设计一个包装盒,如图所示,请你设计一个包装盒,如图所示,ABCD是边长为是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点于图中的点P,正好形成一个正四棱柱形状的包装盒,正好形成一个正四棱柱形状的包装盒,E、F在在AB上是被切去的等腰直角三角形斜边的两个上是被切去的等腰直角三角形斜边的两个端点,设端点,设AE=FB=xcm(1)若广告商要求包装盒侧
7、面积)若广告商要求包装盒侧面积S(cm)最大,试问)最大,试问x应取何值?应取何值?(2)若广告商要求包装盒容积)若广告商要求包装盒容积V(cm)最大,试问)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值。应取何值?并求出此时包装盒的高与底面边长的比值。课本例题的改编导数解决放到课本例题的改编导数解决放到17题位置相对简单。题位置相对简单。练习练习2:某种圆柱形的饮料罐的容积一定时某种圆柱形的饮料罐的容积一定时,如何确定它如何确定它的高与底半径的高与底半径,使得所用材料最省使得所用材料最省?Rh解解 设圆柱的高为设圆柱的高为h,底面半径为底面半径为R.则表面积为则表面积为 S(R)
8、=2Rh+2R2.又又V=R2h(定值定值),.2RVh则2222)(RRVRRS.222RRV.042)(2RRVRS由.23VR 解得3222VRVh从而即即h=2R.可以判断可以判断S(R)只有一个极值点只有一个极值点,且是最小值点且是最小值点.答答 罐高与底的直径相等时罐高与底的直径相等时,所用材料最省所用材料最省.200817如图,某地有三家工厂,分别位于矩形如图,某地有三家工厂,分别位于矩形ABCD的两个顶点的两个顶点A,B及及CD的中点的中点P处处AB20km,BC10km为了处理这三家工厂的污水,现要在该矩形区域为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与上(含边
9、界)且与A,B等距的一点等距的一点O处,建造一个污水处,建造一个污水处理厂,并铺设三条排污管道处理厂,并铺设三条排污管道AO,BO,PO记铺设管记铺设管道的总长度为道的总长度为ykm(1)按下列要求建立函数关系式:)按下列要求建立函数关系式:(i)设)设 (rad),将表示成的函数;),将表示成的函数;(ii)设)设 (km),将表示成的函数;),将表示成的函数;(2)请你选用()请你选用(1)中的一个函数关系确定污水处理厂的)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短。位置,使铺设的污水管道的总长度最短。【解析】本小题主要考查函数最值的应用BCDAOPBAOOPx10
10、1010 10tancoscosyOAOBOP20 10sin10cosy042220200 010yxxxx2210coscos20 10sin10 2sin1coscossinymin10 10 36y时例例3.已知某商品生产成本已知某商品生产成本C与产量与产量q的函数关系式为的函数关系式为C=100+4q,价格价格p与产量与产量q的函数关系式为的函数关系式为 求产量求产量q为何值为何值时时,利润利润L最大。最大。.8125qp 分析分析:利润利润L等于收入等于收入R减去成本减去成本C,而收入而收入R等于产量乘价格等于产量乘价格.由此可得出由此可得出利润利润L与产量与产量q的函数关系式的函
展开阅读全文