定积分的概念上课说课讲解课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《定积分的概念上课说课讲解课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 积分 概念 上课 讲解 课件
- 资源描述:
-
1、 xy0直线直线xy0几条线段连成的几条线段连成的折线折线xyo曲线曲线探究思考问题问题1:你能求出下面图像的面积吗?:你能求出下面图像的面积吗?问题问题2:第三幅图的面积应该怎么求呢?:第三幅图的面积应该怎么求呢?因此,我们可以用这条直线因此,我们可以用这条直线L来代替点来代替点P附附近的曲线,也就是说:在点近的曲线,也就是说:在点P附近,曲线可以看附近,曲线可以看作直线(即在很小范围作直线(即在很小范围“内以直代曲内以直代曲”)P放大放大再放大再放大PP“以直代曲以直代曲,无限逼近无限逼近”的数学思想的数学思想 y=f(x)bax yO A1A A1.用一个矩形的面积用一个矩形的面积A A
2、1 1近似代替曲边梯形近似代替曲边梯形的面积的面积A A,得,得A A1+A2用两个矩形的面积用两个矩形的面积 近似代替曲边梯形近似代替曲边梯形的面积的面积A,得,得 y=f(x)bax yOA1A2A A1+A2+A3+A4用四个矩形的面积用四个矩形的面积 近似代替曲边梯形近似代替曲边梯形的面积的面积A,得得 y=f(x)bax yOA1A2A3A4 y=f(x)bax yOA A1+A2+An 将曲边梯形分成将曲边梯形分成 n n个小曲边梯形,并用小矩个小曲边梯形,并用小矩形的面积代替小曲边梯形的面积,形的面积代替小曲边梯形的面积,于是曲边梯于是曲边梯形的面积形的面积A A近似为近似为A1
3、AiAn 以直代曲以直代曲,无限逼近无限逼近 2 2曲边梯形的面积曲边梯形的面积 求曲边梯形的面积即求曲边梯形的面积即求求 下的面积下的面积)(xfy 0)(xf 分成很窄的小曲边梯形,分成很窄的小曲边梯形,然后用矩形面积代后求和。然后用矩形面积代后求和。若若“梯形梯形”很窄,很窄,可近似地用矩形面积代替可近似地用矩形面积代替在不很窄时怎么办?在不很窄时怎么办?以直代曲以直代曲 Oabxy)(xfy Oabxy)(xfy例例1.1.求抛物线求抛物线y y=x x2 2、直线、直线x x=1=1和和x x轴所围成的曲边轴所围成的曲边梯形的面积。梯形的面积。n1n2nknnxOy解析解析:把底边把
4、底边0,10,1分成分成n n等份等份,然后在每个分点作底边的垂然后在每个分点作底边的垂线线,这样曲边三角形被分成这样曲边三角形被分成n n个窄条个窄条,用矩形来近似代替用矩形来近似代替,然后把这些小矩形的面积加起来然后把这些小矩形的面积加起来,得到一个近似值,再取得到一个近似值,再取其极限值。其极限值。2xy 探究思考把区间把区间00,11等分成等分成n n个小区间个小区间:,nn,n1n,ni,n1i,n2,n1,n1,0 每个区间的长度为i ii i-1 11 1 x x=-=n nn nn n过各区间端点作过各区间端点作x轴的垂线,从而得到轴的垂线,从而得到n个小个小曲边梯形,他们的面
5、积分别记作曲边梯形,他们的面积分别记作.S,S,S,Sni21 1 1n n2 2n nknnnxOy2yxi-1iffnni-1ninifni-1fn 如图,当如图,当n n很很大时,即大时,即x x很小很小时,在区间时,在区间 上可以认为函数上可以认为函数 的值变化很小的值变化很小.i-1i,nn2y=x 把曲边梯形分成把曲边梯形分成n个小曲边梯形面积记个小曲边梯形面积记做做 .用小矩形的面用小矩形的面积积 近似地替代近似地替代 即局部小范围内即局部小范围内“以直以直代曲代曲”.2ii2i-1i-1SS=fx=xnni-11=i=1,2,n.nnisi i s sis则阴影部分面积则阴影部
6、分面积ns 2nni=1i=1nnii=12222233S=S=111n-11=0+nnnnn1=1+2+n-1nn-1n2 n-11=n6111=1-i-1i-11f x=1-3n2nnnnn111SS=1-1-3n2n得到得到S S(曲边梯形面积)(曲边梯形面积)的近似值的近似值:当当分分割割的的份份数数无无限限增增多多,即即n n,x x0 0时时 当当n趋向于无穷大,即趋向于无穷大,即 趋向于趋向于0时,时,趋向于趋向于S.从而有从而有xxn111S=1-1-3n2n nni=1nnnS=lim S=1111=lim1-11-=3n2i-1limfnnn3 分割分割以曲代直以曲代直作和
7、作和逼近逼近例例1.求抛物线求抛物线y=x2、直线直线x=1和和x轴所围成的曲边梯形的面积轴所围成的曲边梯形的面积。n1n2nknn21112222223311 1()()11121110 1(12(1)1(1)(21)611112.6nnnniiiiiiSSfxnnnnnnnnnnnnnnn nnnn xOy解解把底边把底边0,10,1分成分成n n等份等份,然后在每个分点作底边的垂线然后在每个分点作底边的垂线,这样曲边三角形被分成这样曲边三角形被分成n n个窄条个窄条,用矩形来近似代替用矩形来近似代替,然后把然后把这些小矩形的面积加起来这些小矩形的面积加起来,得到一个近似值得到一个近似值:
8、2xy 因此因此,我们有理由相我们有理由相信信,这个曲边三角形这个曲边三角形的面积为的面积为:lim111lim1261.3nnnSSnn求由连续曲线求由连续曲线y f(x)对应的对应的曲边梯形曲边梯形面积的方法面积的方法 (2)取近似求和取近似求和:任取任取x xi xi 1,xi,第,第i个小曲边梯形的面积用个小曲边梯形的面积用高为高为f(x xi)而宽为而宽为 x的小矩形面积的小矩形面积f(x xi)x近似之。近似之。(3)取极限取极限:,所求曲边所求曲边梯形的梯形的面积面积S为为 取取n个小矩形面积的和作为曲边梯个小矩形面积的和作为曲边梯形面积形面积S的近似值:的近似值:xiy=f(x
9、)x yObaxi+1xix1lim()niniSfxx1()niiSfxx (1)分割分割:在区间在区间0,1上等间隔地插入上等间隔地插入n-1个点个点,将它等分成将它等分成n个小区间个小区间:每个小区间宽度每个小区间宽度xban 11211,iina xx xxxxb引入引入 如果汽车做变速直线运动,在时刻如果汽车做变速直线运动,在时刻t t的速度为的速度为 (t (t的单位:的单位:h h,v v的单位:的单位:km/h)km/h),那么它在,那么它在 这段时间内行驶的路程这段时间内行驶的路程s s(单位:(单位:kmkm)是)是多少?多少?2v(t)=-t+20t1 求变速直线运动的路
10、程求变速直线运动的路程探究思考nnSS lim 结合求曲边梯形面积的过程,你认为结合求曲边梯形面积的过程,你认为汽车行驶的路程汽车行驶的路程s和由直线和由直线t=0,t=1,v=0和和曲线曲线 所围成的曲边梯形的面所围成的曲边梯形的面积有什么关系?积有什么关系?2v(t)=-t+2 在时间区间在时间区间0,1上等间隔地插入上等间隔地插入n-1个分点,将它等分成个分点,将它等分成n个小区间:个小区间:112n-10,1nnnn 记第记第i i个区间为个区间为 ,其长度为:其长度为:i-1 i,i=1,2,nnnii-11t=-=nnn 当当n很大,即很大,即 很小时,在区间很小时,在区间 上,函
11、数上,函数 的变化值很小,的变化值很小,近似地等于一个常数近似地等于一个常数.从物理意义上看,就是汽车在从物理意义上看,就是汽车在时间段时间段 上的速度上的速度变化很小,不妨认为它近似地以时变化很小,不妨认为它近似地以时刻刻 处的速度作处的速度作匀速行驶匀速行驶.i-1i,nnt2v(t)=-t+2i-1ni-1i,i=1,2,nnn2ii2i-1i-11s=s=vt=-+2nnni-112=-+i=1,2,nnnn在区间在区间 上,近似地认为速度为上,近似地认为速度为 即在局部小范围内即在局部小范围内“以匀速代变速以匀速代变速”.i-1i,nn2i-1i-1v=-+2nn 由近似代替求得:由
12、近似代替求得:2nnnii=1i=122233ni=122i-112-+nnn111n-11-0-i-1ss=s=v tn=1=-1+2+n-1+2n1(n-1)n(2 n-1)=-+2nn+2n6111=-1-1n-+232 nnnnnnnni=1n1i-1s=lims=limvnn1115=lim-1-1-+2=3n2n3 当当n趋向于无穷大,即趋向于无穷大,即 趋向于趋向于0时,时,趋向于趋向于s,从而有,从而有n111s=-1-1-+23n2nt一般地,如果物体做变速直线运动,速度函一般地,如果物体做变速直线运动,速度函数为数为 vv t,那么我们也可以采用分割、近似代,那么我们也可以
13、采用分割、近似代替、求和、取极限的方法,利用“以不变代变”替、求和、取极限的方法,利用“以不变代变”的方法及无限逼近的思想,求出它在的方法及无限逼近的思想,求出它在a atb b内内所作的位移所作的位移S 结论结论 从求曲边梯形面积以及变速直线运动路程从求曲边梯形面积以及变速直线运动路程的过程可知,它们都可以通过的过程可知,它们都可以通过“四步曲四步曲”:分分割、近似代替、求和、取极限割、近似代替、求和、取极限得到解决,且都得到解决,且都可以归结为求一个特定形式和的极限可以归结为求一个特定形式和的极限.曲边梯形面积变速直线运动路程niinniixfnxfS110)(1lim)(limxxnii
14、nniitvntvS110)(1lim)(limxx 复习复习一、定积分的概念一、定积分的概念bxxxxxabaxfnii110上连续,用分点,)在区间(一般地,如果函数,)()(),作和式,(上任取一点,间个小区间,在每个小区等分成,将区间niniiiiiifnabxfnixxnba11121xxx.上的定积分,)在区间(叫做函数某个常数,这个常数时,上述和式无限接近当baxfn.lim1niinbabafnabdxxfdxxf)()(,即)(记作x 概念概念定积分的定义:定积分的相关名称:定积分的相关名称:叫做积分号,叫做积分号,f(x)叫做被积函数,叫做被积函数,f(x)dx 叫做被积表
15、达式,叫做被积表达式,x 叫做积分变量,叫做积分变量,a 叫做积分下限,叫做积分下限,b 叫做积分上限,叫做积分上限,a,b 叫做积分区间。叫做积分区间。1()lim()ninibaf x dxfnxba即Oabxy)(xfy Sbaf(x)dx;按定积分的定义,有 (1)由连续曲线yf(x)(f(x)0),直线xa、xb及x轴所围成的曲边梯形的面积为 (2)设物体运动的速度vv(t),则此物体在时间区间a,b内运动的距离s为 sbav(t)dt。Oab()vv ttv定积分的定义:1()lim()ninibaf x dxfnxba即112001()3Sf x dxx dx根据定积分的定义右边
16、图形的面积为1x yOf(x)=x213S 1SD2SD2()2v tt=-+O Ov t t12gggggg3SDjSDnSD1n2n3njn1nn-4SD112005()(2)3Sv t dttdt 根据定积分的定义左边图形的面积为正确理解定积分的概念正确理解定积分的概念(),dt();()()()bbbaaaf x dxf u duf t (1)定积分是一个数值 极限值 它的值仅仅取决于被积函数与积分的上下限 而与积分变量用什么字母表示无关 即称为积分形式的不变性 120320a,b,.()()(1)(1)baf x d xxdxxdx (2)定积分与积分区间息息相关 不同的积分区间定积
展开阅读全文