多元函数的基本概念课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《多元函数的基本概念课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 函数 基本概念 课件
- 资源描述:
-
1、一、多元函数的概念一、多元函数的概念二、多元函数的极限二、多元函数的极限三、多元函数的连续性三、多元函数的连续性四、小结四、小结 第一节第一节 多元函数的基本概念多元函数的基本概念 设设),(000yxP是是xoy平面上的一个点,平面上的一个点,是某是某一正数,与点一正数,与点),(000yxP距离小于距离小于 的点的点),(yxP的全体,称为点的全体,称为点0P的的 邻域,记为邻域,记为),(0 PU,(1)邻域)邻域0P),(0 PU|0PPP .)()(|),(2020 yyxxyx一、多元函数的概念一、多元函数的概念),(00 PU|00PPP .)()(0|),(2020 yyxxy
2、x(2)区域)区域.)(的的内内点点为为则则称称,的的某某一一邻邻域域一一个个点点如如果果存存在在点点是是平平面面上上的的是是平平面面上上的的一一个个点点集集,设设EPEPUPPE.EE 的内点属于的内点属于EP.为开集为开集则称则称的点都是内点,的点都是内点,如果点集如果点集EE41),(221 yxyxE例如,例如,即为开集即为开集的的边边界界点点为为),则则称称可可以以不不属属于于,也也本本身身可可以以属属于于的的点点(点点也也有有不不属属于于的的点点,于于的的任任一一个个邻邻域域内内既既有有属属如如果果点点EPEEPEEPEP 的边界的边界的边界点的全体称为的边界点的全体称为 EE是连
3、通的是连通的开集开集,则称,则称且该折线上的点都属于且该折线上的点都属于连结起来,连结起来,任何两点,都可用折线任何两点,都可用折线内内是开集如果对于是开集如果对于设设DDDD 连通的开集称为区域或开区域连通的开集称为区域或开区域.41|),(22 yxyx例如,例如,xyo开开区区域域连连同同它它的的边边界界一一起起称称为为闭闭区区域域.41|),(22 yxyx例如,例如,xyo0|),(yxyx有界闭区域;有界闭区域;无界开区域无界开区域xyo例如,例如,则称为无界点集为有界点集,否成立,则称对一切即,不超过间的距离与原点,使一切点如果存在正数对于点集EEPKOPKOPOEPKE41|)
4、,(22 yxyx(3)聚点)聚点 设设 E是平面上的一个点集,是平面上的一个点集,P 是平面上的是平面上的一个点,如果点一个点,如果点 P 的任何一个去心邻域内总有的任何一个去心邻域内总有无限多个点属于点集无限多个点属于点集 E,则称,则称 P 为为 E 的聚点的聚点.1.内点是聚点;内点是聚点;2.边界点是聚点;边界点是聚点;10|),(22 yxyx例例(0,0)既是既是边界点也是聚点边界点也是聚点3.点集点集E的聚点可以属于的聚点可以属于E,也可以不属于,也可以不属于E10|),(22 yxyx例如例如,(0,0)是聚点但不属于集合是聚点但不属于集合1|),(22 yxyx例如例如,边
5、界上的点都是聚点也都属于集合边界上的点都是聚点也都属于集合(4)n维空间维空间 设设n为为取取定定的的一一个个自自然然数数,我我们们称称n元元数数组组),(21nxxx的的全全体体为为n维维空空间间,而而每每个个n元元数数组组),(21nxxx称称为为n维维空空间间中中的的一一个个点点,数数ix称称为为该该点点的的第第i个个坐坐标标.1.n维空间的记号为维空间的记号为;nR2.n维空间中两点间距离公式维空间中两点间距离公式),(21nxxxP),(21nyyyQ.)()()(|2222211nnxyxyxyPQ 3.n维空间中邻域、区域等概念维空间中邻域、区域等概念 nRPPPPPU ,|),
6、(00 特殊地当特殊地当 时,便为数轴、平面、时,便为数轴、平面、空间两点间的距离空间两点间的距离3,2,1 n内点、边界点、区域、聚点等概念也可定义内点、边界点、区域、聚点等概念也可定义邻域:邻域:设两点为设两点为 设设D是是平平面面上上的的一一个个点点集集,如如果果对对于于每每个个点点DyxP),(,变变量量z按按照照一一定定的的法法则则总总有有确确定定的的值值和和它它对对应应,则则称称z是是变变量量yx,的的二二元元函函数数,记记为为),(yxfz (或或记记为为)(Pfz ).(5)二元函数的定义)二元函数的定义当当2 n时时,n元元函函数数统统称称为为多多元元函函数数.多元函数中同样
7、有定义域、值域、自变量、多元函数中同样有定义域、值域、自变量、因变量等概念因变量等概念.类似地可定义三元及三元以上函数类似地可定义三元及三元以上函数例例1 1 求求 的定义域的定义域222)3arcsin(),(yxyxyxf 解解 013222yxyx 22242yxyx所求定义域为所求定义域为.,42|),(222yxyxyxD 例:求下列函数的定义域例:求下列函数的定义域)1ln(),(122yxyxf)(1yx)y,x(0yx1)y,x()f(D2222 -有界开区域有界开区域3arcsin2arcsin),()2(yxyxf 3y,2x)y,x()f(D -有界闭区域有界闭区域)ln
8、(),()3(yxyxf 0yx)y,x()f(D -无界开区域无界开区域1)ln()4(22yxxyxyz 1yx,0 xy,xy)y,x()f(D22 例:例:),(1,0),(22yxfyxyxxyyxf),则(若22(,)(1,)xf x yfxyxy若,则)(,0),(2xfxzyyxfyxz则时当若(6)二元函数二元函数 的图形的图形),(yxfz 设设函函数数),(yxfz 的的定定义义域域为为D,对对于于任任意意取取定定的的DyxP),(,对对应应的的函函数数值值为为),(yxfz ,这这样样,以以x为为横横坐坐标标、y为为纵纵坐坐标标、z为为竖竖坐坐标标在在空空间间就就确确定
9、定一一点点),(zyxM,当当x取取遍遍D上上一一切切点点时时,得得一一个个空空间间点点集集),(),(|),(Dyxyxfzzyx ,这这个个点点集集称称为为二二元元函函数数的的图图形形.(如下页图)(如下页图)二元函数的图形通常是一张曲面二元函数的图形通常是一张曲面.xyzoxyzsin 例如例如,图形如右图图形如右图.2222azyx 例如例如,左图球面左图球面.),(222ayxyxD 222yxaz .222yxaz 单值分支单值分支:定定义义 1 1 设设函函数数),(yxfz 的的定定义义域域为为),(,000yxPD是是其其聚聚点点,如如果果对对于于任任意意给给定定的的正正数数
展开阅读全文