复杂网络理论与应用研究[精]课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《复杂网络理论与应用研究[精]课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复杂 网络 理论 应用 研究 课件
- 资源描述:
-
1、复杂网络理论与应用研究复杂网络理论与应用研究 提提 纲纲引论引论复杂网络复杂网络(图图)的基本概念的基本概念规则图和随机网络规则图和随机网络无标度无标度(Scale-free)(Scale-free)网络网络复杂网络的邻域演化模型复杂网络的邻域演化模型无标度网络的抗毁性无标度网络的抗毁性1 1 引论引论在现实世界中,网络无处不在大脑,是由轴突相连结的神经细胞网络,而细大脑,是由轴突相连结的神经细胞网络,而细胞本身,又是由生化反应相连结的分子网络。胞本身,又是由生化反应相连结的分子网络。社会也是一个网络,它由友情、家庭和职业关社会也是一个网络,它由友情、家庭和职业关系彼此连结。系彼此连结。在更大
2、的尺度上,食物链和生态系统可以看作在更大的尺度上,食物链和生态系统可以看作由物种所构成的网络。由物种所构成的网络。科技领域的网络更是随处可见科技领域的网络更是随处可见:因特网、电力因特网、电力网和运输系统都是实例。网和运输系统都是实例。因特网是一个复杂网络。(本图绘制于2003年2月6日,描绘了从某一测试站点到其他约10万个站点的最短连结路径。图中以相同的颜色来表示相类似的站点。Nature 2000)1 引论引论复杂网络具有如下5个特征:网络的大规模性和行为的统计性网络的大规模性和行为的统计性:网络节点数可以有成百上千网络节点数可以有成百上千万万,甚至更多甚至更多,超大规模网络的行为具有统计
3、特性。超大规模网络的行为具有统计特性。节点动力学行为的复杂性节点动力学行为的复杂性:各个节点本身可以是各非线性系统各个节点本身可以是各非线性系统(可以有离散的和连续微分方程描述)(可以有离散的和连续微分方程描述),具有分岔和混沌等非具有分岔和混沌等非线性动力学行为。线性动力学行为。网络连接的稀疏性网络连接的稀疏性:一个有一个有N N个节点的具有全局耦合结构的网络个节点的具有全局耦合结构的网络的连接数目为(的连接数目为(N N 2 2),而实际大型网络的连接数目通常为而实际大型网络的连接数目通常为(N N)。连接结构的复杂性连接结构的复杂性:网络连接结构既非完全规则也非完全随机网络连接结构既非完
4、全规则也非完全随机,但却具有其内在的自组织规律。但却具有其内在的自组织规律。网络的时空演化的复杂性网络的时空演化的复杂性:复杂网络具有空间和时间的演化复复杂网络具有空间和时间的演化复杂性杂性,展示出丰富的复杂行为展示出丰富的复杂行为,特别是网络节点之间的不同类特别是网络节点之间的不同类型的同步化运动。型的同步化运动。中国教科网中国教科网中国教科网拓扑结构中国教科网拓扑结构网络(图)的基本概念网络(图)的基本概念关联与邻接关联与邻接度、平均度度、平均度节点的度分布节点的度分布最短路径与平均路径长度最短路径与平均路径长度群系数群系数网络网络(图图)的基本概念的基本概念aedcb网络网络(图图)的基
5、本概念的基本概念n节点的度分布是指网络(图)中节点的度分布是指网络(图)中度为度为 的节点的概率的节点的概率 随随节点度节点度 的变化规律。的变化规律。k)(kpk网络网络(图图)的基本概念的基本概念n最短路径就是从指定始点到指定终点的最短路径就是从指定始点到指定终点的所有路径中总权最小的一条路经。所有路径中总权最小的一条路经。n平均路径长度是指所有点对之间的最短平均路径长度是指所有点对之间的最短路径的算术平均值。路径的算术平均值。网络网络(图图)的基本概念的基本概念n集群系数集群系数(Clustering coefficient)(Clustering coefficient)反反映网络的群
6、集程度,定义为网络的平均映网络的群集程度,定义为网络的平均度与网络规模之比。度与网络规模之比。NkC22 77 55553311网络网络(图图)的基本概念的基本概念节点节点1 1到到7 7之间的最短路之间的最短路1313,平均路径长度,平均路径长度5.475.47,平均度为平均度为3.43.4,集群系数为,集群系数为0.480.48。网络网络(图图)的基本概念的基本概念3 3、规则图和随机图、规则图和随机图n规则图的特征规则图的特征 如果系统中节点及其与边的关系是固定的,如果系统中节点及其与边的关系是固定的,每个节点都有相同的度数,就可以用规每个节点都有相同的度数,就可以用规则图来表示这个系统
7、。则图来表示这个系统。n随机图的特征随机图的特征 如果系统中节点及其与边的关系不确定,如果系统中节点及其与边的关系不确定,就只能用随机图来表示这个系统。就只能用随机图来表示这个系统。规则图的特征规则图的特征平均度为平均度为3 3随机图的特征随机图的特征n节点确定,但边以概率节点确定,但边以概率 任意连任意连接。接。n节点不确定,点边关系也不确定。节点不确定,点边关系也不确定。p随机图随机图节点节点1919,边,边4343平均度为平均度为2.422.42,集群系数为,集群系数为0.130.13。随机图随机图节点节点4242,边,边118118平均度为平均度为5.625.62,集群系数为,集群系数
8、为0.1330.133。4.4.复杂网络的演化模型复杂网络的演化模型l复杂网络是大量互联的节点的集合,节点复杂网络是大量互联的节点的集合,节点是信息的载体,比如互联网,万维网,以是信息的载体,比如互联网,万维网,以及各种通信网、食物网、生物神经网、电及各种通信网、食物网、生物神经网、电力网、社会经济网、科学家合作网等。力网、社会经济网、科学家合作网等。l最近的研究文献揭示了复杂网络的许多重最近的研究文献揭示了复杂网络的许多重要特性,其中最有影响的是小世界要特性,其中最有影响的是小世界(small-world)(small-world)特性和无标度特性和无标度(scale-free)(scale
9、-free)特性。特性。早期网络模型早期网络模型-ER-ER模型模型nErdsErds和和Rnyi Rnyi(ERER)最早提出随机网络)最早提出随机网络模型并对模型进行了深入研究,他们是模型并对模型进行了深入研究,他们是用用概率统计方法概率统计方法研究随机图统计特性的研究随机图统计特性的创始人。创始人。n在模型开始阶段给定在模型开始阶段给定N N个节点,没有边,个节点,没有边,以概率以概率p p用边连接任意一对节点,用这样用边连接任意一对节点,用这样的方法产生一随机网络。的方法产生一随机网络。ER-ER-模型模型nErdsErds和和RnyiRnyi(19591959)首先研究了在随)首先研
10、究了在随机 网 络 中 最 大 和 最 小 度 的 分 布,机 网 络 中 最 大 和 最 小 度 的 分 布,Bollobs(1981)Bollobs(1981)随后得到了所有度分布随后得到了所有度分布的形式,推导出度数为的形式,推导出度数为k k的节点数遵从平的节点数遵从平均值为均值为 的泊松分布,即的泊松分布,即 k!eP(k)kConnect with probability pp=1/6 N=10 k 1.5Poisson distribution小世界模型小世界模型n为了描述从一个局部有序系统到一个随机为了描述从一个局部有序系统到一个随机网络的转移过程,网络的转移过程,WattsW
11、atts和和 StrogatzStrogatz(WSWS)提出了一个新模型,通常称为小世界网络提出了一个新模型,通常称为小世界网络模型。模型。nWSWS模型始于一具有模型始于一具有N N个节点的一维网络,个节点的一维网络,网络的节点与其最近的邻接点和次邻接点网络的节点与其最近的邻接点和次邻接点相连接,然后每条边以概率相连接,然后每条边以概率p p重新连接。重新连接。约束条件为节点间无重边,无自环。约束条件为节点间无重边,无自环。C(p):clustering coeff.L(p):average path length(Nature 1998)P(k)=0.1 p(k)=0.3小世界模型小世界
12、模型n当当p p等于等于0 0时,对应的网络规则图。两个节点间时,对应的网络规则图。两个节点间的平均距离的平均距离线性地随线性地随N N增长而增长,集群系增长而增长,集群系数大。数大。n当当p p等于等于1 1时,系统变为随机图。时,系统变为随机图。对数地随对数地随N N增长而增长,且集群系数随增长而增长,且集群系数随N N减少而减少。减少而减少。n在在p p等于(等于(0 0,1 1)区间任意值时,模型显示出)区间任意值时,模型显示出小世界特性,小世界特性,约等于随机图的值,网络具约等于随机图的值,网络具有高度集群性。有高度集群性。l小世界特性是指网络具有如下式的拓扑特点:小世界特性是指网络
13、具有如下式的拓扑特点:l小世界网络具有与随机网络大致相近的特征路径长小世界网络具有与随机网络大致相近的特征路径长度,但具有大得多的聚类系数。度,但具有大得多的聚类系数。l小世界电网所特有的较小特征路径长度和较高聚类小世界电网所特有的较小特征路径长度和较高聚类系数等特性,对故障的传播起推波助澜的作用。系数等特性,对故障的传播起推波助澜的作用。randomrandomLLCCknLrandomlnlnnkCrandom小世界网络模型小世界网络模型 根据表根据表1 1中数据可以判定美国西部电网和中国北方电网均属中数据可以判定美国西部电网和中国北方电网均属于小世界网络,而中国川渝电网和中国广东省电网不
14、属于小于小世界网络,而中国川渝电网和中国广东省电网不属于小世界网络。世界网络。表表1 1 各电网拓扑结构统计特性参数表各电网拓扑结构统计特性参数表电网名称节点个数边条数平均度数CLCrandomLrandom中国北方电网809290182.230.001732.00.0002811.2中国东北电网114413092.290.0034214.00.0028.50中国华北电网370640452.180.0012320.70.000610.55中国华中电网237927562.320.004421.080.0019.238美国西部电网494165942.670.08018.70.000512.4中国川
15、渝电网8538982.110.001719.630.00259.038中国广东省电网187120002.140.0008415.10.00119.92 Scale-free Scale-free网络网络n信息交换网(信息交换网(万维网、国际互联网、电话网、电万维网、国际互联网、电话网、电力网力网)n社会网络(社会网络(电影演员合作网、科研合作图、引文网、电影演员合作网、科研合作图、引文网、人类性接触网、语言学网人类性接触网、语言学网)n生物网络(生物网络(细胞网络、生态网络、蛋白质折叠细胞网络、生态网络、蛋白质折叠)kkp)(Scale-freeScale-free网络的特性网络的特性n度分布
16、呈幂率分布度分布呈幂率分布n中枢节点出现中枢节点出现n稳健性稳健性n脆弱性脆弱性N etw orkCCrandLNW W W0.10780.000233.1153127Internet0.18-0.30.0013.7-3.763015-6209A ctor0.790.000273.65225226C oauthorship0.430.000185.952909M etabolic0.320.0262.9282Foodw eb0.220.062.43134C.elegance0.280.052.65282无标度网络与随机图特性比较无标度网络与随机图特性比较Barabsi-Albert无标度网络模
17、型无标度网络模型l 在复杂网络领域的一个重大发现是很多大型的复杂网络呈在复杂网络领域的一个重大发现是很多大型的复杂网络呈现出无标度特性,这些网络中的节点度数呈现幂分布规律,现出无标度特性,这些网络中的节点度数呈现幂分布规律,比如互联网、万维网、新陈代谢网等。为了解释这种幂分比如互联网、万维网、新陈代谢网等。为了解释这种幂分布规律,布规律,BarabsiBarabsi和和AlbertAlbert构建了一种无标度网络模型,构建了一种无标度网络模型,即即BABA模型。模型。l BarabsiBarabsi和和AlbertAlbert指出无标度网络自组织的两个重要因素指出无标度网络自组织的两个重要因素
展开阅读全文