圆的基本性质全面版课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《圆的基本性质全面版课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基本 性质 全面 课件
- 资源描述:
-
1、2023-2-12余金耀1圆的基本性质圆的基本性质2023-2-12余金耀2圆心圆心半径半径2.不在同一直线上的不在同一直线上的三个三个点确定一个圆。点确定一个圆。圆圆 确定位置确定位置 确定大小确定大小1.2023-2-12余金耀3点与圆的位置关系点与圆的位置关系 你发现你发现点与圆的位置关系点与圆的位置关系是由什么是由什么来决定的呢?来决定的呢?如果圆的半径为如果圆的半径为r,点到圆心的距离为点到圆心的距离为d,则:,则:点在圆上点在圆上 d=r 点在圆内点在圆内 dr2023-2-12余金耀4OABC点在圆外点在圆外BPCBAC点在圆上点在圆上BPC=BAC2023-2-12余金耀5OC
2、AB经过三角形的三个顶点的圆叫做三角形经过三角形的三个顶点的圆叫做三角形的的外接圆外接圆,外接圆的圆心叫做三角形的,外接圆的圆心叫做三角形的外心外心,三角形叫做圆的,三角形叫做圆的内接三角形内接三角形。问题问题1:如何作三角形的外接:如何作三角形的外接圆?如何找三角形的外心?圆?如何找三角形的外心?问题问题2:三角形的外心一定:三角形的外心一定 在三角形内吗?在三角形内吗?OCABC90OCABABC是锐角三角形是锐角三角形OCABABC是钝角三角形是钝角三角形2023-2-12余金耀6垂直于弦的直径及其推及其推论论2023-2-12余金耀7圆是圆是中心对称图形中心对称图形,圆还具有圆还具有旋
3、转不变性旋转不变性.2023-2-12余金耀8想一想想一想:将一个圆沿着任一条直径对折,:将一个圆沿着任一条直径对折,两侧半圆会有什么关系?两侧半圆会有什么关系?性质:性质:圆是圆是轴对称图形轴对称图形,任何一条,任何一条直径直径所在的直线都是它的所在的直线都是它的对称轴对称轴。观察右图,有什么等量关系?观察右图,有什么等量关系?OCDABOCDABOBCDAEAO=BO=CO=DO,弧AD弧BD,弧AC弧BC,AEBE。AO=BO=CO=DO,弧AD弧BC=弧AC弧BD。AO=BO=CO=DO,弧AD弧BC,弧AC弧BD。2023-2-12余金耀9OBCDAE垂直于弦的直径垂直于弦的直径平平
4、分分这条这条弦弦,并且,并且平分平分弦所对弦所对的两条的两条弧弧。2023-2-12余金耀10判断下列图形,能否使用垂径定理?判断下列图形,能否使用垂径定理?OCDBAOCDBAOCDBAOCDE注意:定理中的两个条件注意:定理中的两个条件(直径,垂直于弦)缺一不(直径,垂直于弦)缺一不可!可!2023-2-12余金耀11OABE若圆心到弦的距离用若圆心到弦的距离用d表示,半径用表示,半径用r表示,表示,弦长用弦长用a表示,这三者表示,这三者之间有怎样的关系?之间有怎样的关系?2222adr2023-2-12余金耀12OABCDAC、BD有什么关系?有什么关系?ACBD依然成依然成立吗立吗?O
5、ABCDOABCDFEEA_,EC=_。FDFBOABCD:_ AC=BD.OA=OBOABCD:_ AC=BD.OC=OD2023-2-12余金耀13 如图,如图,P为为 O的弦的弦BA延长线上延长线上一点,一点,PAAB2,PO5,求求 O的半径。的半径。MAPBO关于弦的问题,常关于弦的问题,常常需要常需要过圆心作弦过圆心作弦的垂线段的垂线段,这是一,这是一条非常重要的条非常重要的辅助辅助线线。圆心到弦的距离、圆心到弦的距离、半径、弦长半径、弦长构成构成直直角三角形角三角形,便将问,便将问题转化为直角三角题转化为直角三角形的问题。形的问题。2023-2-12余金耀14画图叙述垂径定理,并
6、说出定理的题设和结论。画图叙述垂径定理,并说出定理的题设和结论。题设题设结论结论直线直线CD经过圆心经过圆心O直线直线CD垂直弦垂直弦AB直线直线CD平分弦平分弦AB直线直线CD平分弧平分弧ACB直线直线CD平分弧平分弧AB想一想:如果将题设和想一想:如果将题设和结论中的结论中的5 5个条件适当互个条件适当互换,情况会怎样?换,情况会怎样?OBCDAE2023-2-12余金耀15(1)平分弦平分弦(不是直径)(不是直径)的直径的直径垂直于弦垂直于弦,并且,并且平分弦所对的两条弧平分弦所对的两条弧;(2 2)弦的垂直平分线弦的垂直平分线经过圆心经过圆心,并且并且平分弦所对的两条弧平分弦所对的两条
7、弧;(3 3)平分弦所对的一条弧的直径平分弦所对的一条弧的直径,垂直平分弦垂直平分弦并且并且平分弦所对的另一条弧平分弦所对的另一条弧。OBCDAE2023-2-12余金耀16如图如图,CD为为 O的直径的直径,ABCD,EFCD,你能得到什么结论?你能得到什么结论?圆的两条圆的两条平行弦平行弦所夹的弧相等所夹的弧相等。FOBAECD2023-2-12余金耀17圆心角、弧、弦、弦心距之间的关系2023-2-12余金耀18圆的性质圆的性质 圆是轴对称图形,每一条直径所圆是轴对称图形,每一条直径所在的直线都是对称轴。在的直线都是对称轴。圆是以圆心为对称中心的圆是以圆心为对称中心的中心对中心对称图形。
8、称图形。圆还具有圆还具有旋转不变性旋转不变性,即圆绕圆,即圆绕圆心旋转任意一个角度心旋转任意一个角度,都能与,都能与原来的图形重合。原来的图形重合。2023-2-12余金耀19如图,如图,AOBAOB,OCAB,OCAB。猜想:猜想:弧弧AB与弧与弧AB,AB与与AB,OC与与OC之间的关系,并证明你的猜想。之间的关系,并证明你的猜想。定理定理 相等的圆心角相等的圆心角所对的所对的弧弧相等,所对的相等,所对的弦弦相相等,所对的弦的等,所对的弦的弦心弦心距距相等。相等。在同圆或等圆中,在同圆或等圆中,OABCABC2023-2-12余金耀20圆心角所对的弧相等,圆心角所对的弧相等,圆心角圆心角所
9、对的弦相等,所对的弦相等,圆心角圆心角所对弦的弦心距相等。所对弦的弦心距相等。在同圆或等圆中,在同圆或等圆中,如果两个圆心角、两条弧、如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有两条弦或两条弦的弦心距中有一组量相等,那么它们所对应一组量相等,那么它们所对应的其余各组量都分别相等的其余各组量都分别相等。在同圆或等圆中在同圆或等圆中(前提前提)圆心角相等圆心角相等(条件)(条件)2023-2-12余金耀211圆心角圆心角1弧弧OABCDn圆心角圆心角n弧弧圆心角的度数圆心角的度数和它所对的弧和它所对的弧的度数相等。的度数相等。2023-2-12余金耀22圆周角圆周角2023-2-12余金耀2
10、3OBACOBCAOCAB2023-2-12余金耀24OCABOCABOCAB化化归归化化归归分类讨论分类讨论完全归纳法完全归纳法2023-2-12余金耀25OCAB1、已知、已知AOB75,求:求:ACBOCAB2、已知、已知AOB120,求:求:ACBODBAC3、已知、已知ACD30,求:,求:AOBOBAC4、已知、已知AOB110,求:求:ACB2023-2-12余金耀26推论推论 定理:一条弧所对的圆周角等于它所定理:一条弧所对的圆周角等于它所对的圆心角的一半。对的圆心角的一半。也可以理解为:一条弧所对的圆心角也可以理解为:一条弧所对的圆心角是它所对的圆周角的二倍;是它所对的圆周角
11、的二倍;圆周角的圆周角的度数等于它所对的弧的度数的一半度数等于它所对的弧的度数的一半。弧相等,圆周角是否相等?反过来呢?弧相等,圆周角是否相等?反过来呢?什么时候圆周角是直角?反过来呢?什么时候圆周角是直角?反过来呢?直角三角形斜边中线有什么性质?反过直角三角形斜边中线有什么性质?反过来呢?来呢?2023-2-12余金耀27OBADEC如图,比较如图,比较ACBACB、ADBADB、AEBAEB的大小的大小同弧所对的圆同弧所对的圆周角相等周角相等如图,如果弧如图,如果弧ABAB弧弧CDCD,那么,那么E E和和F F是什么关系?反过来呢?是什么关系?反过来呢?DCEBFAO等弧所对的圆周角相等
12、;在等弧所对的圆周角相等;在同圆中,相等的圆周角所对同圆中,相等的圆周角所对的弧也相等的弧也相等DCEO1BFAO2如图,如图,O O1 1和和O O2 2是是等圆,如果弧等圆,如果弧ABAB弧弧CDCD,那么,那么E E和和F F是是什么关系?反过来呢?什么关系?反过来呢?等圆也成立等圆也成立2023-2-12余金耀28推论推论1 1同弧或等弧所对的圆周角相等同弧或等弧所对的圆周角相等同圆或等圆中,相等的圆周角所对的同圆或等圆中,相等的圆周角所对的弧相等。弧相等。思考:思考:1 1、“同圆或等圆同圆或等圆”的条件能否去掉?的条件能否去掉?2 2、判断正误:在同圆或等圆中,如果两个、判断正误:
13、在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦心距、两个圆心角、两条弧、两条弦、两条弦心距、两个圆周角中有一组量相等,那么它们所对应的圆周角中有一组量相等,那么它们所对应的其余各组量也相等。其余各组量也相等。OBACDOCBAFED2023-2-12余金耀29关于等积式的证明关于等积式的证明如图,已知如图,已知ABAB是是O O的弦,半径的弦,半径OPABOPAB,弦,弦PDPD交交ABAB于于C C,求证:求证:PAPA2 2PCPDPCPDCDPBAO经验:经验:证明等积式,通常利用相似;证明等积式,通常利用相似;找角相等,要有找同弧或等弧找角相等,要有找同弧或等弧所对的圆周角的意
展开阅读全文