2020届广州市普通高中毕业班高三理科数学综合测试(一)含答案.pdf
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020届广州市普通高中毕业班高三理科数学综合测试(一)含答案.pdf》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 广州市 普通高中 毕业班 理科 数学 综合测试 答案 下载 _考试试卷_数学_高中
- 资源描述:
-
1、理科数学试题 A 第 1 页 共 6 页 秘密 启用前 试卷类型: A 2020 年广州市普通高中毕业班综合测试(一) 理科数学 本试卷共 6 页,23 小题, 满分 150 分考试用时 120 分钟 注意事项:注意事项:1答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上, 用 2B 铅笔在答题卡的相应位置填涂考生号,并将试卷类型(A)填涂在答题卡 的相应位置上 2作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答 案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案答案不能答 在试卷上 3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡
2、各题目指 定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案; 不准使用铅笔和涂改液不按以上要求作答无效 4考生必须保证答题卡的整洁考试结束后,将试卷和答题卡一并交回 一、选择题:本题共一、选择题:本题共 1212 小题,每小题小题,每小题 5 5 分,共分,共 6060 分分在每小题给出的四个选项中,只有一在每小题给出的四个选项中,只有一 项是符合题目要求的项是符合题目要求的 1设集合01,MxxxR,2,Nx xxR,则 AMNM BMNN CMNM DMN R 2若复数z满足方程02 2 z,则 3 z A22 B22 C2 2 i D 2 2 i 3若直线10kxy 与
3、圆 22 2410xyxy 有公共点,则实数k的取值范围是 A3, B, 3 C0, D, 4已知21:xp,:23qx,则p是q的 A充分不必要条件 B必要不充分条件 C充要条件 D既不充分又不必要条件 理科数学试题 A 第 2 页 共 6 页 5设函数 1 ( )2cos 23 f xx ,若对任意xR都有)()()( 21 xfxfxf成立,则 21 xx 的最小值为 A 2 B C2 D4 6 已知直三棱柱 111 ABCABC的体积为V, 若P,Q分别在 1 AA, 1 CC上, 且 1 1 3 APAA, 1 1 3 CQCC,则四棱锥BAPQC的体积为 A 1 6 V B 2 9
4、 V C 1 3V D 7 9 V 7为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心某市将垃圾 分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾某班按此四类由10位同学组成了 四个宣传小组,其中可回收物与餐厨垃圾宣传小组各有2位同学,有害垃圾与其他垃圾宣 传小组各有3位同学现从这10位同学中选派5人到某小区进行宣传活动,则每个宣传小 组至少选派1人的概率为 A 5 14 B 9 14 C 3 7 D 4 7 8已知直线l:2yx与x轴的交点为抛物线C: 2 2ypx的焦点,直线l与抛物线C交 于A,B两点,则AB的中点到抛物线C的准线的距离为 A8 B6 C5 D4 9等差
5、数列 n a的前n项和为 n S,已知 1 1 3 a , 25 4aa,若48 nn Sa * nN, 则 n 的最小值为 A8 B9 C10 D11 10已知点 00 ,P xy是曲线C: 32 1yxx上的点,曲线C在点P处的切线方程与直线 811yx平行,则 A 0 2x B 0 4 3 x C 0 2x 或 0 4 3 x D 0 2x 或 0 4 3 x 理科数学试题 A 第 3 页 共 6 页 11 已知O为坐标原点, 设双曲线C: 22 22 10,0 xy ab ab 的左, 右焦点分别为 1 F, 2 F, 点P是双曲线C上位于第一象限上的点, 过点 2 F作 12 FPF
6、的平分线的垂线, 垂足为A, 若 12 2bFFOA,则双曲线C的离心率为 A 5 4 B 4 3 C 5 3 D2 12已知函数 2 2 1,0 ( ) 1,0 xxx f x xxx , , 若 sin 20201F xf xx在区间1,1 上有m个零点 1 x, 2 x, 3 x, m x,则 123 ( )()()() m f xf xf xf x A4042 B4041 C4040 D4039 二、填空题:二、填空题:本题共本题共 4 4 小题,每小题小题,每小题 5 5 分分,共共 2020 分分 13如图,如果一个空间几何体的正视图与侧视图为全等的等 边三角形,俯视图为一个半径为
7、 1 的圆及其圆心,则这个 几何体的体积为 ,表面积为 14在 5 2 1 1axx x 的展开式中, 3 x的系数是15,则实数a 15已知单位向量 1 e与 2 e的夹角为 3 ,若向量 12 2ee与 12 k2ee的夹角为 5 6 ,则实数k的 值为 16记数列 n a的前n项和为 n S,已知 1 cossin 22 nn aann n * nN ,且 2019 1009mS , 1 0a m ,则 1 19 am 的最小值为 理科数学试题 A 第 4 页 共 6 页 三、三、解答题:共解答题:共 7070 分分解答应写出文字说明、证明过程和演算步骤解答应写出文字说明、证明过程和演算
8、步骤第 1721 题为必考题, 每个试题考生都必须做答第 22、23 题为选考题,考生根据要求做答 (一)必考题(一)必考题:共:共 60 分分 17 (12 分) ABC的内角A,B,C的对边分别为a,b,c已知3c ,且满足 sin 3 sinsinsin abC aAbBcC (1)求角C的大小; (2)求2ba的最大值 18 (12 分) 随着马拉松运动在全国各地逐渐兴起,参与马拉松训练与比赛的人数逐年增加为此, 某市对参加马拉松运动的情况进行了统计调查,其中一项调查是调查人员从参与马拉松运动 的人中随机抽取 100 人,对其每月参与马拉松运动训练的天数进行统计,得到以下统计表: 平均
9、每月进行训练的天数x 5x 520x 20x 人数 15 60 25 (1)以这100人平均每月进行训练的天数位于各区间的频率代替该市参与马拉松运动训练的 人平均每月进行训练的天数位于该区间的概率,从该市所有参与马拉松运动训练的人中随机抽取 4个人,求恰好有2个人是“平均每月进行训练的天数不少于20天”的概率; (2)依据统计表,用分层抽样的方法从这100个人中抽取12个,再从抽取的12个人中 随机抽取3个,Y表示抽取的是“平均每月进行训练的天数不少于20天”的人数,求Y的分 布列及数学期望 E Y 理科数学试题 A 第 5 页 共 6 页 19 (12 分) 如图 1,在边长为2的等边ABC
10、中,D,E分别为边AC,AB的中点将AED沿 DE折起,使得ABAD,ACAE,得到如图2的四棱锥ABCDE,连结BD,CE,且 BD与CE交于点H (1)求证:AH 平面BCDE; (2)求二面角BAED的余弦值 20 (12 分) 已知M过点A 3,0,且与N: 2 2 316xy内切,设M的圆心M的 轨迹为曲线C (1)求曲线C的方程; (2) 设直线l不经过点2,0B且与曲线C相交于P,Q两点 若直线PB与直线QB的 斜率之积为 1 2 ,判断直线l是否过定点,若过定点,求出此定点坐标;若不过定点,请说明 理由 图2图1 B C DE H A B C D E A 理科数学试题 A 第
11、6 页 共 6 页 21 (12 分) 已知函数 32 4 e6 x f xxxx, 1 1 ln 3 g xaxx (1)求函数 f x在0,上的单调区间; (2)用max,m n表示m,n中的最大值, fx为 f x的导数设函数 max,h xfxg x ,若 0h x 在区间0,上恒成立,求实数a的取值范围; (3)证明: 11111 ln3 12313nnnnn * nN (二)选考题(二)选考题:共共10分请考生在第分请考生在第22、23题中任选题中任选一题作答如果一题作答如果多多做,则按所做的第一做,则按所做的第一 题计分题计分 22选修 44:坐标系与参数方程(10 分) 在平面
12、直角坐标系xOy中,曲线 1 C的参数方程为 3, 1 2 xt yt (t为参数) ,曲线 2 C的参 数方程为 3 , cos 3tan x y (为参数,且, 22 ) (1)求曲线 1 C和 2 C的普通方程; (2)若A,B分别为曲线 1 C, 2 C上的动点,求AB的最小值 23选修 45:不等式选讲(10 分) 已知函数|63|)(axxxf,aR (1)当1a时,解不等式3)(xf; (2)若不等式( )11 4f xx对任意 3 4, 2 x 成立,求实数a的取值范围 理科数学试题 A 第 1 页 共 15 页 绝密 启用前 2020 年广州市普通高中毕业班综合测试(一)年广
13、州市普通高中毕业班综合测试(一) 理科数学试题答案及评分参考 评分说明: 1本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的 主要考查内容比照评分参考制订相应的评分细则 2对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内 容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一 半;如果后继部分的解答有较严重的错误,就不再给分 3解答右端所注分数,表示考生正确做到这一步应得的累加分数 4只给整数分数选择题不给中间分 一一、选择题、选择题 题号题号 1 2 3 4 5 6 7 8 9 10 11 12 答案答案 A D
14、D B C B C A C B C B 二二、填空题、填空题 13 3 3 ,3 145 1510 1616 说明:第说明:第13题中第题中第1个空个空2分,第二个空分,第二个空3分分 三、三、解答题解答题 17解解: (1)根据正弦定理 sinsinsin abc ABC , 得 222 3 abc abc 因为3c ,所以 222 ababc【或 22 3abab】 由余弦定理,得 222 1 cos 22 abc C ab 【或 22 31 cos 22 ab C ab 】 , 因为0C,所以 3 C 理科数学试题 A 第 2 页 共 15 页 (2)由已知与(1)知3c , 3 C 由
15、正弦定理 sinsinsin abc ABC 3 2 sin 3 , 得2sinaA, 2 2sin2sin 3 bBA 所以2ba 2 2sin4sin 3 AA 5sin3cosAA 2 7sin+A(其中 3 tan 5 ,0 2 ) 因为 2 0 3 A ,0 6 ,所以 5 0 6 A 所以= 2 A 时,22 7sin+baA取得最大值2 7 所以2ba的最大值为2 7 18解: (解: (1)设从该市参与马拉松运动训练的人中随机抽取一个人,抽到的人刚好是“平均 每月进行训练的天数不少于20天”记为事件为A, 则 251 1004 P A 设抽到的人是“平均每月进行训练的天数不少于
16、20天”的人数为, 则 1 4 4 B , 所以恰好抽到2个人是“平均每月进行训练的天数不少于20天”的概率为 22 2 4 3127 2C 44128 P (2)用分层抽样的方法从100个马拉松训练者中抽取12个,则其中“平均每月进行训练 的天数不少于20天”有3个 理科数学试题 A 第 3 页 共 15 页 现从这 12 人中抽取3个,则“平均每月进行训练的天数不少于20天”的数量Y服从超 几何分布,Y的所有可能的取值为0,1,2,3 则 03 39 3 12 C C21 0 C55 P Y , 12 39 3 12 C C27 1 C55 P Y , 21 39 3 12 C C27 2
17、 C220 P Y , 30 39 3 12 C C1 3 C220 P Y 所以Y的分布列如下: Y 0 1 2 3 P 21 55 27 55 27 220 1 220 所以 27272111653 0123= 22555522022400 E Y 19 (1)证明证明 1:在图1中,因为ABC为等边三角形,且D为边AC的中点, 所以BDAC 在BCD中,BDCD,2BC ,1CD,所以3BD 因为,D E分别为边,AC AB的中点,所以/EDBC 在图2中,有 1 2 DHED HBBC ,所以 13 33 DHBD 因为ABAD,所以ABD为直角三角形 因为1AD ,3BD ,所以 3
展开阅读全文