土力学教学课件第5章土的压缩性及地基变形计算.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《土力学教学课件第5章土的压缩性及地基变形计算.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 土力学 教学 课件 压缩性 地基 变形 计算
- 资源描述:
-
1、5.1 概概 述述Section 1 Introduction1.1.沉降分类沉降分类(Classification of settlement)(1)均匀沉降)均匀沉降(Uniform settlement)(2)不均匀沉降)不均匀沉降(Nonuniform settlement)2.2.沉降计算的必要性沉降计算的必要性(Necessity of settlement calculation)19861986年:开工年:开工19901990年:人工岛完成年:人工岛完成19941994年:机场运营年:机场运营面积:面积:4370m4370m1250m1250m填筑量:填筑量:180180101
2、06 6m m3 3平均厚度:平均厚度:33m33m地基:地基:15-21m15-21m厚粘土厚粘土问题:沉降大问题:沉降大 且不均匀且不均匀日本关西国际机场日本关西国际机场世界最大人工岛世界最大人工岛关西国际机场关西国际机场设计预测沉降:设计预测沉降:5.75.77.5 m7.5 m完工实际沉降:完工实际沉降:8.1 m8.1 m,5cm/5cm/月月(1990(1990年年)预测主固结完成:预测主固结完成:2020年后年后比设计超填:比设计超填:3.0 m3.0 m日期日期测测 点点123578101112151617平均平均00-12 10.69.712.811.710.613.011.
3、610.312.712.59.014.111.701-12 10.89.913.011.910.713.211.810.512.912.79.114.311.9tSn 粘性土地基的沉降量粘性土地基的沉降量S由机由机理不同的三部分沉降组成:理不同的三部分沉降组成:F初始瞬时沉降初始瞬时沉降 Sd:在不排在不排水条件下,由剪应变引起水条件下,由剪应变引起侧向变形导致侧向变形导致F主固结沉降主固结沉降 Sc:由超静孔由超静孔压消散导致的沉降,通常压消散导致的沉降,通常是地基变形的主要部分是地基变形的主要部分F次固结沉降次固结沉降 Ss:由于土骨由于土骨架的蠕变特性引起的变形架的蠕变特性引起的变形sc
4、dSSSS 粘性地基的沉降类型粘性地基的沉降类型S Sd d:初始瞬时沉降:初始瞬时沉降Ss:次固结沉降次固结沉降S Sc c:主固结沉降:主固结沉降总变形:总变形:土的变形特性测定方土的变形特性测定方法法现场试验现场试验 荷载试验荷载试验 旁压试验旁压试验三轴应力状态三轴应力状态 侧限压缩试验侧限压缩试验 三轴压缩试验三轴压缩试验 其他特殊试验其他特殊试验室内试验室内试验一维问题一维问题5.2.1 基本概念基本概念(Basic concept)1.1.土的压缩性土的压缩性 (Compressibility of soil)2.2.土体被压缩的主要原因土体被压缩的主要原因3.3.土的固结土的固
5、结(Consolidation)(1)主固结主固结 Primary Consolidation(2)次固结次固结 Secondary Consolidation4.4.土体压缩和固结与土的结构和性质有关土体压缩和固结与土的结构和性质有关 Compressibility related to the structure and property of soilsSoil compressibility土体变形的机理土体变形的机理 弹性变形弹性变形 接触点处弹性变形接触点处弹性变形 弹性挠曲变形弹性挠曲变形 颗粒翻转的可逆性颗粒翻转的可逆性 封闭气泡受压封闭气泡受压 塑性变形塑性变形 大孔隙消失大
6、孔隙消失 接触点颗粒破碎接触点颗粒破碎 颗粒相对滑移颗粒相对滑移 扁平颗粒断裂扁平颗粒断裂土体的变形特性土体的变形特性土体的特点:散粒体土体的特点:散粒体F体应变主要由孔隙体积变化引起体应变主要由孔隙体积变化引起F剪应变主要由土颗粒的大小和排列形态变化引起剪应变主要由土颗粒的大小和排列形态变化引起土的本构模型土的本构模型1E1-3f 11-3 1121-3 11234线弹性线弹性-理想塑性理想塑性非线性弹性非线性弹性弹塑性弹塑性一维压缩性及其指标一维压缩性及其指标F -p(或(或)曲线)曲线F e p(或(或)曲线)曲线F e lgp(或(或lg)曲线)曲线F 先期固结压力先期固结压力F 原位
7、压缩曲线及原位再压缩曲线原位压缩曲线及原位再压缩曲线由侧限压缩试由侧限压缩试验整理得到的验整理得到的三条常用曲线三条常用曲线10010000.60.70.80.9eC Cc c1 11 1C Ce ep(kPa,lg)e-lgp曲线曲线Ce 回弹指数回弹指数 (再压缩指数)(再压缩指数)Ce 1 p0pc 超超固结土固结土 OCRpc 欠欠固结土固结土 Determination of preconsolidation pressure pc(1 1)作图法(图)作图法(图5-105-10)(2 2)经验公式)经验公式(5-15)pucICp0037.011.04.4.先期固结压力先期固结压力
8、pc的确定的确定先期固结压力先期固结压力n 先期固结压力:先期固结压力:土层历史上所经受到的最大压力土层历史上所经受到的最大压力 p p p=s:正常固结土正常固结土 p s:超固结土超固结土 p1OCR1:超固结超固结OCR1OCR1 s1 硬粘土(应力扩散)硬粘土(应力扩散)S S偏大偏大,s1spci-p0i时时 超固结段超固结段 正常固结段正常固结段(2)当)当ppci-p0i时时(5-25)(5-26)icisiippCe0lg ciiiciipppCe0lg(5-27)iiiiHeeHeeSSS002111 ciiiciicisiipppCppCeHSSS00021lglg1(5-
9、28)iiisiiipppCeHeeS0000lg113.欠固结土欠固结土(图(图5-17)Underconsolidated soil(1)由自重应力产生的变形)由自重应力产生的变形S1(2)由附加应力产生的变形)由附加应力产生的变形S2(5-29)ciiiciiiiiiciiiciiciiiiiiipppCeHpppCeHppCeHHeeHeeSSS00000000021lg1lg1lg111n 渗透固结理论是针对土这种多孔多相松散介质渗透固结理论是针对土这种多孔多相松散介质,建建立起来的反映土体变形过程的基本理论。土力学立起来的反映土体变形过程的基本理论。土力学的创始人的创始人Terza
10、ghiTerzaghi教授于教授于2020世纪世纪2020年代提出饱和年代提出饱和土的一维渗透固结理论土的一维渗透固结理论物理模型物理模型 太沙基一维渗透固结模型太沙基一维渗透固结模型数学模型数学模型 渗透固结微分方程渗透固结微分方程方程求解方程求解 理论解答理论解答固结程度固结程度 固结度的概念固结度的概念一维渗流固结理论一维渗流固结理论5.4 饱和粘土的一维固结理论饱和粘土的一维固结理论Section 4 One-dimensional consolidation theory for saturated cohesion soil5.4.1 太沙基渗压模型太沙基渗压模型 Terzaghi
11、s seepage pressure model1.1.模型组成模型组成(Model composition)(1)弹簧)弹簧(Spring)土骨架土骨架(Soil skeleton)(2)水)水(Water)土中水土中水(Water in soil)(3)开孔活塞板)开孔活塞板(Piston with hole)土的土的排水条件排水条件(drainage condition of soil)(4)容器()容器(Container)侧限条件侧限条件(Confining condition)5.4.2 多层渗压模型多层渗压模型(图图5-20)Multilayer seepage pressure
12、 model t=0,u1=u2=u3=u4=p,1=2=3=4=0 0t,u1 u2 u3 u4 2 3 4 t,u1=u2=u3=u4=0,1=2=3=4=p1.1.土层是均质且完全饱和土层是均质且完全饱和2.2.土颗粒与水不可压缩土颗粒与水不可压缩3.3.水的渗出和土层压缩只沿竖向发生水的渗出和土层压缩只沿竖向发生4.4.渗流符合达西定律且渗透系数保持不变渗流符合达西定律且渗透系数保持不变5.5.压缩系数压缩系数a a是常数是常数6.6.荷载均布荷载均布,瞬时施加,瞬时施加,总应力不随时间变化总应力不随时间变化u 基本假定基本假定u 基本变基本变量量总应力总应力已知已知有效应力原理有效应
13、力原理超静孔隙水压超静孔隙水压力的时空分布力的时空分布数数 学学 模模 型型u0=pt=0u=p z=0t=u=0 z=pzu0t u0p 不透水岩层不透水岩层z排水面排水面Hu:超静孔压:超静孔压z:有效应力:有效应力p:总附加应力:总附加应力u+z=ppF土层超静孔压是土层超静孔压是z z和和t t的函数,渗流固的函数,渗流固结的过程取决于土层可压缩性(总排结的过程取决于土层可压缩性(总排水量)和渗透性(渗透速度)水量)和渗透性(渗透速度)数数 学学 模模 型型p 不透水岩层不透水岩层z排水面排水面Hu0=pu:超静孔压:超静孔压z:有效应力:有效应力p:总附加应力:总附加应力u+z=pu
14、0:初始超静孔压:初始超静孔压zdz微单元微单元t时刻时刻q(qdz)z q dz11微小单元(微小单元(11dz)微小时段(微小时段(dt)土的压缩特性土的压缩特性 有效应力原理有效应力原理 达西定律达西定律渗流固结渗流固结基本方程基本方程土骨架的体积变化土骨架的体积变化孔隙体积的变化孔隙体积的变化流入流出水量差流入流出水量差连续性连续性条件条件zu数数 学学 模模 型型固体体积:固体体积:111Vdzconst1e 2111VeVe(dz)1e 孔隙体积:孔隙体积:dtdt时段内:时段内:孔隙体积的变化流出的水量孔隙体积的变化流出的水量2Vqqdtqqdzdtdzdttzz 11eq1et
15、z q(qdz)z q dz11z数数 学学 模模 型型dtdt时段内:时段内:孔隙体积的变化流出的水量孔隙体积的变化流出的水量11eq1etz uwhkuqAkikikzz 221wauku1etz 212wk 1euutaz zz(u)euaaatttt 达西定律达西定律:土的压缩性:土的压缩性:zea 有效应力原理:有效应力原理:zzu 孔隙体积的变化土骨架的体积变化孔隙体积的变化土骨架的体积变化u-超静孔压超静孔压数数 学学 模模 型型uCv 反映土的固结特性:孔压消散的快慢固结速度反映土的固结特性:孔压消散的快慢固结速度uCv 与渗透系数与渗透系数k成正比,与压缩系数成正比,与压缩系
16、数a成反比;成反比;u单位:单位:cm2/s;m2/year,粘性土一般在,粘性土一般在 10-4 cm2/s 量级量级1vwk(1e)Ca 212wk 1euutaz 2v2uuCtz F 固结系数固结系数:数数 学学 模模 型型5.4.3 一维固结微分方程的建立及其解答一维固结微分方程的建立及其解答 Establish and solution of one-dimensional consolidation differential equation 1.1.基本假定基本假定(Basic assumption)2.2.一维渗流固结微分方程的建立一维渗流固结微分方程的建立(图图5-21)孔
展开阅读全文