书签 分享 收藏 举报 版权申诉 / 24
上传文档赚钱

类型313空间向量的数量积运算(改)-课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5099927
  • 上传时间:2023-02-11
  • 格式:PPT
  • 页数:24
  • 大小:657.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《313空间向量的数量积运算(改)-课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    313 空间 向量 数量 运算 课件
    资源描述:

    1、平面向量数量积的相关知识平面向量数量积的相关知识复习:复习:平面向量的夹角:平面向量的夹角:AOBAB叫做向量叫做向量 a与与 b的夹角。的夹角。已知两个已知两个非零非零向量向量 a 和和 b,在平面上取一点在平面上取一点O,作作OA=a,OB=b,则则AOB平面向量的数量积的定义:平面向量的数量积的定义:平面向量的数量积平面向量的数量积已知两个非零向量已知两个非零向量a,b,则,则|a|b|cos叫做向量叫做向量a,b的数量积,记作的数量积,记作ba即即cos|baba并规定并规定 0 0a你能类比平面向量的数量积的有关概念、计算方法和运算律推导出空间向量的数量积的有关概念、计算方法和运算律

    2、吗?概念概念1 1)两个向量的夹角的定义两个向量的夹角的定义abbaba,0被唯一确定了,并且量的夹角就在这个规定下,两个向范围:bababa互相垂直,并记作:与则称如果,2,babaAOBbOBaOAOba,.,记作:的夹角,与叫做向量则角作,在空间任取一点量如图,已知两个非零向O OA AB Baabb2 2)两个向量的数量积)两个向量的数量积注意:注意:两个向量的数量积是数量,而不是向量两个向量的数量积是数量,而不是向量.零向量与任意向量的数量积等于零。零向量与任意向量的数量积等于零。babababababababaaaOAaOA,cos,cos,即记作:的数量积,叫做向量,则已知空间两

    3、个向量记作:的长度或模的长度叫做向量则有向线段设3)3)空间向量的数量积特殊情况空间向量的数量积特殊情况 aaababaeaaea2)30)2,cos)1注意:注意:2 2)是证明两向量垂直的依据;)是证明两向量垂直的依据;3 3)是求向量的长度(模)的依据;)是求向量的长度(模)的依据;对于非零向量对于非零向量 ,有:,有:,ab4)4)空间向量的数量积满足的运算律空间向量的数量积满足的运算律 1)()()2)(3()(aba ba bb aabca ba cba ba bba b 交换律)分配律)4)aa思考思考1.下列命题成立吗?若 ,则若 ,则a ba c bc kab a bk ()

    4、()a bcab c 135 应用由于空间向量的数量积与向量的模和夹角有关由于空间向量的数量积与向量的模和夹角有关,所以立体几何中的距离、夹角的求解都可以借所以立体几何中的距离、夹角的求解都可以借助向量的数量积运算来解决助向量的数量积运算来解决.(1)空间中的两条直线空间中的两条直线(特别是异面直线特别是异面直线)的夹角的夹角,可以通过求出这两条直线所对应的两个向量的可以通过求出这两条直线所对应的两个向量的夹角而获得夹角而获得.对于两条直线的判断更为方便对于两条直线的判断更为方便.(2)空间中的距离空间中的距离,即两点所对应的向量的模即两点所对应的向量的模.因因此空间中的两点间的距离或线段的长

    5、度此空间中的两点间的距离或线段的长度,可以可以通过求向量的模得到通过求向量的模得到.典型例题典型例题例例1 在平面内的一条直线在平面内的一条直线,如果和这个平面的一如果和这个平面的一条斜线的射影垂直条斜线的射影垂直,那么它也和这条斜线垂直那么它也和这条斜线垂直.P O A la 分析分析:用向量来证明:用向量来证明两直线垂直,只需证两直线垂直,只需证明两直线的方向向量明两直线的方向向量的数量积为零即可!的数量积为零即可!证明:证明:如图如图,已知已知:,POAOllOA 射射影影且且求证:求证:lPA 在直线在直线l上取向量上取向量 ,只要证只要证a 0a PA ()0a PAaPO OAa

    6、POa OA ,aPAl 即即P PA A.为为 P O A la 0,0a POa OA 逆命题成立吗?P O A la 变式变式设设A、B、C、D是空间不共面的四点是空间不共面的四点,且满足且满足则则BCD是是 ()A.钝角三角形钝角三角形 B.直角三角形直角三角形C.锐角三角形锐角三角形 D.不确定不确定0,0,0AB ACAB ADAC AD C C分析:分析:要证明一条直线与一个平面要证明一条直线与一个平面垂直垂直,由直线与平面垂直的定义可由直线与平面垂直的定义可知知,就是要证明这条直线与平面内就是要证明这条直线与平面内的的任意一条直线任意一条直线都垂直都垂直.例例2:(试用试用向量

    7、方法证明直线与平面垂直的判定定理向量方法证明直线与平面垂直的判定定理)已知直线已知直线m,n是平面是平面 内的两条相交直线内的两条相交直线,如果如果 m,n,求证求证:.lll lmngm g m l 取已知平面内的任一条直线取已知平面内的任一条直线 g ,拿相关直线的方拿相关直线的方向向量来分析向向量来分析,看条件可以转化为向量的什么条件看条件可以转化为向量的什么条件?要要证的目标可以转化为向量的什么目标证的目标可以转化为向量的什么目标?怎样建立向量怎样建立向量的条件与向量的目标的联系的条件与向量的目标的联系?共面向量定理共面向量定理lmngn g m l,gxmyn ,l gxl myl

    8、n 0,0,l ml m 0,.l glg 即即,lgll 即即 垂垂直直于于平平面面 内内任任一一直直线线.解解:在在 内作不与内作不与m,n重合的任一直线重合的任一直线g,在在 ,l m n g 上取非零向量上取非零向量 因因m与与n相交相交,故向量故向量m,n,l m n g 不平行不平行,由共面向量定理由共面向量定理,存在唯一实数存在唯一实数 ,使使 (,)x y例例2:已知直线已知直线m,n是平面是平面 内的两条相交直线内的两条相交直线,如果如果 m,n,求证求证:.lll 2ABCD,ADBCACBD练习:已知三棱锥中,求证:例例3 已知线段在平面已知线段在平面 内,线段内,线段,

    9、线段,线段,线段,线段,如,如果,求、之间的距离。果,求、之间的距离。AC BDABDD 30DBD ,ABaACBDb CDAB 解:由,可知解:由,可知.由由 知知 .AC ACAB 30DBD ,120CABD 22222222222|()|2222cos120CDCD CDCA AB BDCAABBDCA ABCA BDAB BDbabbab 22CDabbab CABDD课堂练习ABA1C1B1C1.如图如图,在正三棱柱在正三棱柱ABC-A1B1C1中中,若若AB=BB1,则则AB1与与C1B所成角所成角的大小为的大小为()A.B.C.D.2105 75 90 60 2.已知在平行六面体中,已知在平行六面体中,,求对角线的长。求对角线的长。ABCDABCD 4AB 3,5,90,60ADAABADBAADAA AC DCBDABCAB|85AC 3A,BACBDCDABABlll 例:如图,点到直线 的距离和分别为a和b,的长为c,的长为d,其中,求二面角的余弦 小小 结:结:通过学习通过学习,我们可以利用向量数量积解决立体几何中我们可以利用向量数量积解决立体几何中的以下问题:的以下问题:1 1、证明两直线垂直、证明两直线垂直;2 2、求两点之间的距离或线段长度、求两点之间的距离或线段长度;3 3、求两直线所成角、求两直线所成角.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:313空间向量的数量积运算(改)-课件.ppt
    链接地址:https://www.163wenku.com/p-5099927.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库