书签 分享 收藏 举报 版权申诉 / 19
上传文档赚钱

类型1组合和组合数的公式课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5099645
  • 上传时间:2023-02-11
  • 格式:PPT
  • 页数:19
  • 大小:847.01KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《1组合和组合数的公式课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    组合 公式 课件
    资源描述:

    1、问题一:问题一:从甲、乙、丙从甲、乙、丙3 3名同学中选出名同学中选出2 2名去参名去参加某天的一项活动,其中加某天的一项活动,其中1 1名同学参加上午的名同学参加上午的活动,活动,1 1名同学参加下午的活动,有多少种不名同学参加下午的活动,有多少种不同的选法?同的选法?问题二:问题二:从甲、乙、丙从甲、乙、丙3 3名同学中选出名同学中选出2 2名去参名去参加某天一项活动,有多少种不同的选法?加某天一项活动,有多少种不同的选法?236A 甲、乙;甲、丙;乙、丙甲、乙;甲、丙;乙、丙 3 3情境创设情境创设从已知的从已知的3个不同个不同元素中每元素中每次取出次取出2个元素个元素 ,并成一组并成一

    2、组问题问题2从已知的从已知的3 个不同个不同元素中每元素中每次取出次取出2个元素个元素 ,按照一定按照一定的顺序排的顺序排成一列成一列.问题问题1排列排列组合组合有有顺顺序序无无顺顺序序 一般地,从一般地,从n个不同元素中取出个不同元素中取出m(mn)个元素)个元素并成一组并成一组,叫做从,叫做从n个个不同元素中取出不同元素中取出m个元素的一个个元素的一个组合组合 排列与组合的排列与组合的概念有什么共概念有什么共同点与不同点?同点与不同点?概念讲解概念讲解组合定义组合定义:组合定义组合定义:一般地,从一般地,从n个不同元素中取出个不同元素中取出m(mn)个个元素元素并成一组并成一组,叫做从,叫

    3、做从n个不同元素中取出个不同元素中取出m个元素的一个元素的一个个组合组合排列定义排列定义:一般地,从一般地,从n n个不同元素中取出个不同元素中取出m(mn)个个元素,元素,按照一定的顺序排成一列按照一定的顺序排成一列,叫做从,叫做从 n 个不同元素个不同元素中取出中取出 m 个元素的一个个元素的一个排列排列.共同点共同点:都要都要“从从n个不同元素中任取个不同元素中任取m个元素个元素”不同点不同点:排列排列与元素的顺序有关,与元素的顺序有关,而组合而组合则与元素的顺序无关则与元素的顺序无关.概念讲解概念讲解思考一思考一:ab b与与b ba是相同的排列还是相同的组合是相同的排列还是相同的组合

    4、?为什么为什么?思考二思考二:两个相同的排列有什么特点两个相同的排列有什么特点?两个相同的组合呢两个相同的组合呢?)元素相同;)元素相同;)元素排列顺序相同)元素排列顺序相同.元素相同元素相同概念理解概念理解 构造排列分成两步完成,先取后排;而构造构造排列分成两步完成,先取后排;而构造组合就是其中一个步骤组合就是其中一个步骤.思考三思考三:组合与排列有联系吗组合与排列有联系吗?判断下列问题是组合问题还是排列问题判断下列问题是组合问题还是排列问题?(1)(1)设集合设集合A=a,b,c,d,e,则集合,则集合A的含有的含有3 3个元素的子集有个元素的子集有多少个多少个?(2)(2)某铁路线上有某

    5、铁路线上有5 5个车站,则这条铁路线上共需准备多少种个车站,则这条铁路线上共需准备多少种车票车票?有多少种不同的火车票价?有多少种不同的火车票价?组合问题组合问题排列问题排列问题(3)10(3)10名同学分成人数相同的数学和英语两个学习小组名同学分成人数相同的数学和英语两个学习小组,共有共有多少种分法多少种分法?组合问题组合问题(4)10(4)10人聚会,见面后每两人之间要握手相互问候人聚会,见面后每两人之间要握手相互问候,共需握手共需握手多少次多少次?组合问题组合问题(5)(5)从从4 4个风景点中选出个风景点中选出2 2个游览个游览,有多少种不同的方法有多少种不同的方法?组合问题组合问题(

    6、6)(6)从从4 4个风景点中选出个风景点中选出2 2个个,并确定这并确定这2 2个风景点的游览顺序个风景点的游览顺序,有多少种不同的方法有多少种不同的方法?排列问题排列问题组合问题组合问题组合是选择的结果,组合是选择的结果,排列是选择后再排序的结果排列是选择后再排序的结果.1.1.从从 a,b,c三个不同的元素中取出两个元素的所有组三个不同的元素中取出两个元素的所有组合分别是合分别是:ab,ac,bc 2.2.已知已知4 4个元素个元素a,b,c,d ,写出每次取出两个元素的写出每次取出两个元素的所有组合所有组合.ab c d b c d cd ab,ac,ad,bc,bd,cd(3(3个个

    7、)(6(6个个)概念理解概念理解 从从n个不同元素中取出个不同元素中取出m(mn)个元素的个元素的所有组合的个数,叫做从所有组合的个数,叫做从n个不同元素中取出个不同元素中取出m个元素的个元素的组合数组合数,用符号,用符号 表示表示.mnC246C 如如:从从 a,b,c三个不同的元素中取出两个元素的所三个不同的元素中取出两个元素的所有组合个数是有组合个数是:如如:已知已知4 4个元素个元素a、b、c、d,写出每次取出两个写出每次取出两个元素的所有组合个数是:元素的所有组合个数是:概念讲解概念讲解组合数组合数:是一个数,应该把它与是一个数,应该把它与“组合组合”区别开来区别开来 mnC233C

    8、 1.写出从写出从a,b,c,d 四个元素中任取三个元素的所有组合。四个元素中任取三个元素的所有组合。abc,abd,acd,bcd.bcddcbacd想一想:想一想:从从a,b,c,d 四个元素中任取三个四个元素中任取三个元素的所有排列又怎么表示哪?元素的所有排列又怎么表示哪?组合排列abcabdacdbcdabc bac cabacb bca cbaabd bad dabadb bda dbaacd cad dacadc cda dcabcd cbd dbcbdc cdb dcb不写出所有组合,怎样才能知道组合的种数?不写出所有组合,怎样才能知道组合的种数?你发现了你发现了什么什么?34A

    9、求可分两步考虑:34 4C第一步,()个;33 6A第二步,()个;333.434 CAA根据分步计数原理,334343ACA从而mnC如何计算如何计算:组合数公式 排列与组合是有区别的,但它们又有联系排列与组合是有区别的,但它们又有联系根据分步计数原理,得到:根据分步计数原理,得到:因此:因此:一般地,求从一般地,求从 个不同元素中取出个不同元素中取出 个元素的排个元素的排列数,可以分为以下列数,可以分为以下2步:步:nm 第第1步,先求出从这步,先求出从这 个不同元素中取出个不同元素中取出 个元素个元素的组合数的组合数 mnCnm第第2步,求每一个组合中步,求每一个组合中 个元素的全排列数

    10、个元素的全排列数 mnAmmmmnmnACA!121mmnnnnAACmmmnmn 这里 ,且 ,这个公式叫做*Nnm、nm 概念讲解概念讲解组合数公式组合数公式:(1)(2)(1)!mmnnmmAn nnnmCAm 从从 n 个不同元中取出个不同元中取出m个元素的排列数个元素的排列数 mmmnmnCAA!()!mnnCm nm01.nC我们规定:概念讲解概念讲解例例1 1计算:计算:47C 710C32(3),nnnCA已知求例题分析例题分析(1)35(2)120n=8例例2.2.甲、乙、丙、丁甲、乙、丙、丁4 4支足球队举行单循支足球队举行单循环赛环赛(1)(1)列出所有各场比赛的双方;列

    11、出所有各场比赛的双方;(2)2)列出所有冠亚军的可能情况列出所有冠亚军的可能情况.(2 2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 乙甲乙甲、丙甲丙甲、丁甲丁甲、丙乙丙乙、丁乙丁乙、丁丙丁丙(1)(1)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁甲乙、甲丙、甲丁、乙丙、乙丁、丙丁解:解:例题分析例题分析例3.11CmnmCmnmn:求证,!:)(!证明mnmnCmn)!1()!1(!111mnmnmnmmnmCmn)!1)(!)!1(1mnmnnmm.!)(!Cmnmnmn 例例5.5.(1)(1)凸五边形有多少条对角线?凸五边形有多少条对角线?(2)(2)凸凸n n(n3n3)边形有多少条对角线?边形有多少条对角线?例例4.4.(1)(1)平面内有平面内有1010个点,以其中每个点,以其中每2 2个点为端个点为端 点的线段共有多少条?点的线段共有多少条?(2)(2)平面内有平面内有1010个点,以其中每个点,以其中每2 2个点为端点个点为端点的有向线段共有多少条?的有向线段共有多少条?例题分析例题分析排列排列组合组合组合的概念组合的概念组合数的概念组合数的概念组合是选择的组合是选择的结果,排列是结果,排列是选择后再排序选择后再排序的结果的结果联系联系课堂小结课堂小结

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:1组合和组合数的公式课件.ppt
    链接地址:https://www.163wenku.com/p-5099645.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库