书签 分享 收藏 举报 版权申诉 / 23
上传文档赚钱

类型131函数的单调性课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5099510
  • 上传时间:2023-02-11
  • 格式:PPT
  • 页数:23
  • 大小:960.02KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《131函数的单调性课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    131 函数 调性 课件
    资源描述:

    1、1.3.1 函数的单调性函数的单调性情情景景引引入入yyxxoo1 11 1-1-11 11 1-1-1-1-1观察下列两个函数的图象,并说说它们观察下列两个函数的图象,并说说它们分别反映了相应函数的哪些变化规律分别反映了相应函数的哪些变化规律:1.从左向右图象有什么变化趋势?从左向右图象有什么变化趋势?2.函数图象是否具有某种对称性?函数图象是否具有某种对称性?函数的单调性函数的单调性xyo-1-1xOy1 11 12 24 4-1-1-2-2(1)()1f xx 1 12(2)()f xx 1.从左至右图象从左至右图象 2.在区间在区间(-,+)上,随上,随着着x的增大,的增大,f(x)的

    2、值随的值随着着 2.(0,+)上上从左至右图象从左至右图象上升上升,当当x x增大增大时时f(xf(x)随着随着增大增大 1 1上升上升增大增大下降下降 1.(-,0上上从左至右图象从左至右图象 当当x x增大增大时时f(xf(x)随着随着 减小减小思考思考1:画出下列函数的图象,根据图象思考当:画出下列函数的图象,根据图象思考当自变量自变量x的值增大时的值增大时,函数值函数值 是如何变化的?是如何变化的?()f x新课探究新课探究xyo-1-1xOy1 11 12 24 4-1-1-2-2(1)()1f xx 1 12(2)()f xx1 1 在某一区间内,在某一区间内,当当x的值增大时的值

    3、增大时,函数值函数值y也增大也增大图象在该区间内逐渐上升;图象在该区间内逐渐上升;当当x的值增大时的值增大时,函数值函数值y反而减小反而减小图象在该区间内逐渐下降。图象在该区间内逐渐下降。函数的这种性质称为函数的这种性质称为函数的单调性函数的单调性思考思考2:通过上面的观察,如何用通过上面的观察,如何用图象上动点图象上动点P(x,y)的横、纵坐标关系来说明上升或下降趋势?的横、纵坐标关系来说明上升或下降趋势?思考思考3:如何用数学符号描述这种上:如何用数学符号描述这种上升趋势?升趋势?对区间对区间D内内 任意任意 x1,x2,当当x1x2时,时,都有都有 f(x1)f(x2)图象在图象在区间区

    4、间D逐渐上升逐渐上升区间区间D内内随着随着x的增大,的增大,y也增大也增大x0 x1 1 x2 2f(x1)f(x2)1 2221方案1:在区间(0,)上取自变量1,2,12,f(1)f(2)f(x)在(0,+)上,图象逐渐 上升方案2:(0,+)取无数组自变量,验证随着x的增大,f(x)也增大。方案3:在在(0,+)内取任意的内取任意的x1,x2 且且x1x2时,都有时,都有f(x1)f(x2)y对区间对区间D内内 x1,x2,当当x1x2时,时,有有f(x1)f(x2)都都设函数设函数y=f(x)的定义域为的定义域为I,区间区间D I.定义定义 任意任意如果对于如果对于区间区间D上的上的任

    5、意任意两个自变量的值两个自变量的值x1,x2,当当x1x2时,时,都有都有f(x1)f(x2),D称为称为 f(x)的的单调单调增区间增区间.那么就说那么就说 f(x)在区间在区间D上上 是单调是单调增函数增函数,区间区间D内内随着随着x的增大,的增大,y也增大也增大图象在图象在区间区间D逐渐上升逐渐上升0 x1 1f(x1)f(x2)1 2221y 那么就说在那么就说在f(x)这个区间上是单调这个区间上是单调减减函数函数,D称为称为f(x)的的单调单调 减减 区间区间.Oxyx1x2f(x1)f(x2)类比单调增函数的研究方法定义单调减函数类比单调增函数的研究方法定义单调减函数.xOyx1x

    6、2f(x1)f(x2)设函数设函数y=f(x)的定义域为的定义域为I,区间区间D I.如果对于属于定义域如果对于属于定义域I内内某个区间某个区间D上上的的任意任意两个自变量的值两个自变量的值x1,x2,设函数设函数y=f(x)的定义域为的定义域为A,区间区间D I.如果对于属于定义域如果对于属于定义域I内内某个区间某个区间D上上的的任意任意两个自变量的值两个自变量的值x1,x2,那么就说在那么就说在f(x)这个区间上是单调这个区间上是单调增增 函数函数,D称为称为f(x)的的单调单调 区间区间.增增当当x1x2时,时,都有都有f(x1)f(x2),当当x1单调区间单调区间如果函数如果函数 y

    7、y=f f(x x)在区间在区间D D是单调增函数或单调减函是单调增函数或单调减函数,那么就说函数数,那么就说函数 y y=f f(x x)在区间在区间D D上具有单调性。上具有单调性。(1 1)函数单调性是针对某个)函数单调性是针对某个区间区间而言的,是一个而言的,是一个局部性质局部性质;判断判断1 1:函数函数 f(x)=x2 在在 是单调增函数是单调增函数;,xyo2yx(2 2)x x 1 1,x x 2 2 取值的取值的任意任意性性判断判断2 2:定义在:定义在R上的函数上的函数 f(x)满足满足 f(2)(2)f(1)(1),则,则函数函数 f(x)在在R上上是增函数;是增函数;y

    8、xO12f(1)f(2)解解:函数函数y=f(x)的单调区间有的单调区间有5,2),2,1),1,3),3,5.例例1 1.如图是定义在闭区间如图是定义在闭区间 5 5,55上的函数上的函数 y=f(x)的图象的图象,根据图象说出函数的单调区间根据图象说出函数的单调区间,以及在每一单调区间上以及在每一单调区间上,函数是增函数还是减函数是增函数还是减函数?函数?其中其中y=f(x)在区间在区间2,1),3,5上是增函数;上是增函数;说明说明:1.:1.区间端点处若有定义写开写闭均可区间端点处若有定义写开写闭均可.2.2.图象法判断函数的单调性:从左向右看图象的升降情况图象法判断函数的单调性:从左

    9、向右看图象的升降情况 在区间在区间5,2),),1,3)上是减函数上是减函数.()yf x-432154312-1-2-1-5-3-2xyO质发质发疑展疑展答思答思辩维辩维 练一练练一练 根据下图说出函数的单调区间,以及在每一单调根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数区间上,函数是增函数还是减函数.()yf x2544xyO-1321解解:函数函数y=f(x)的单调区间有的单调区间有1,0),0,2),2,4),4,5.其中其中y=f(x)在区间在区间0,2),4,5上是增函数上是增函数;在区间在区间1,0),),2,4)上是减函数上是减函数.例例2、物理学中

    10、的玻意耳定律、物理学中的玻意耳定律 告告诉我们,对于一定量的气体,当其体积诉我们,对于一定量的气体,当其体积V减小时,减小时,压强压强p将增大。试用函数的单调性证明之。将增大。试用函数的单调性证明之。)(为正常数kVkp 证明:12341.设量(自变量);2.作差变形;3.判断;4.结(论)用定义证明函数单调性的四步骤用定义证明函数单调性的四步骤:(1)设量)设量:在所给区间上任意设两个实在所给区间上任意设两个实 数数 1212,.x xxx且(2)作差)作差(3)变形)变形 作差作差 :常通过:常通过“因式分解因式分解”、“通分通分”、“配方配方”等等 手段将差式变形为因式乘积或平方和形式手

    11、段将差式变形为因式乘积或平方和形式 )()(21xfxf 判断判断 的符号的符号12()()f xf x(4)结论)结论:并作出单调性的结论并作出单调性的结论证明函数证明函数 在在R上是减函数上是减函数.).()(21xfxf即即122()0,xx12()()0,f xf x12,xx,021 xx 练一练练一练.利用定义:利用定义:证明:设证明:设 是是R上任意两个值,且上任意两个值,且 ,21,xx21xx 函数函数 在在R上是减函数上是减函数)(221xx()21f xx则则1212()()(21)(21)f xf xxx ()21f xx?画出函数画出函数 图象,写出定义域并写出单调区

    12、间图象,写出定义域并写出单调区间:x1yxy1yx的单调减区间是_(,0)(0,),讨论:讨论:根据函数单调性的定义根据函数单调性的定义1(0)(,0)(0,)yxx能不能说在定义域上是单调减函数?定义域为函数xy1),0()0,(拓展探究拓展探究x1y1()f xxyOx 在在(0 0,+)上上任取任取 x1、x2 当当x12x2()f x1()f x1x1()f xxyOx-11-11 取自变量取自变量1 1 1 1,而而 f(1)1)f(1)(1)不不能说能说 在在(-,0 0)(0 0,+)上是上是减减函数函数 要写成要写成(-,0 0),(0 0,+)的形式。的形式。1yxf(2a)

    13、B f()f(a)C f(+a)f(a)Df(+1)f(a)0)()(babfaf2x2a2a2accD4.函数函数 的单调增区间的单调增区间 单调减区间单调减区间 5.证明函数在证明函数在 是增函数是增函数(1,+)22xy0,(),0 xxy1证明:在区间证明:在区间 上任取两个值上任取两个值 且且 1,12,x x12xx则则12121211()()()()f xf xxxxx121211()()xxxx211212()()xxxxxx1212121()()xxxxxx12,1,x x,且,且12xx12120,10 xxx x 1212()()0,()()f xf xf xf x所以函数所以函数 在区间上在区间上 是增函数是增函数.1yxx1,回

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:131函数的单调性课件.ppt
    链接地址:https://www.163wenku.com/p-5099510.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库