书签 分享 收藏 举报 版权申诉 / 31
上传文档赚钱

类型大学物理学电子教案量子物理德布罗意课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5090631
  • 上传时间:2023-02-10
  • 格式:PPT
  • 页数:31
  • 大小:1.09MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《大学物理学电子教案量子物理德布罗意课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    大学 物理学 电子 教案 量子 物理 德布罗意 课件
    资源描述:

    1、大学物理学电子教案大学物理学电子教案量子物理(量子物理(3)19-6 德布罗意波德布罗意波 实物粒子的二象性实物粒子的二象性19-7 不确定关系不确定关系复复 习习 康普顿效应康普顿效应 氢原子的玻尔理论氢原子的玻尔理论 氢原子光谱的规律性氢原子光谱的规律性 卢瑟福的原子有核模型卢瑟福的原子有核模型 氢氢原子的玻尔理论原子的玻尔理论 弗兰克弗兰克-赫兹实验赫兹实验 实验装置实验装置 实验结果实验结果 解释解释196 德布罗意波德布罗意波 实物粒子的二象性实物粒子的二象性德布罗意德布罗意(Louis Victor due de Broglie,1892-1960)德布罗意原来学习历史,后来改学德

    2、布罗意原来学习历史,后来改学理论物理学。他善于用历史的观点,用理论物理学。他善于用历史的观点,用对比的方法分析问题。对比的方法分析问题。1923年,德布罗意试图把粒子性和年,德布罗意试图把粒子性和波动性统一起来。波动性统一起来。1924年,在博士论文年,在博士论文关于量子理论的研究关于量子理论的研究中提出德布罗中提出德布罗意波意波,同时提出用电子在晶体上作衍射实同时提出用电子在晶体上作衍射实验的想法。验的想法。爱因斯坦觉察到德布罗意物质波思爱因斯坦觉察到德布罗意物质波思想的重大意义,誉之为想的重大意义,誉之为“揭开一幅大幕揭开一幅大幕的一角的一角”。法国物理学家,法国物理学家,1929年诺贝尔

    3、物理学奖获年诺贝尔物理学奖获得者,波动力学的创得者,波动力学的创始人,量子力学的奠始人,量子力学的奠基人之一。基人之一。一、德布罗意假设一、德布罗意假设一个质量为一个质量为m的实物粒子以速率的实物粒子以速率v 运动时,即具有以能量运动时,即具有以能量E和动量和动量P所描述的粒子性,也具有以频率所描述的粒子性,也具有以频率n n和波长和波长l l所描述的所描述的波动性波动性。n nhE l lhP这种波称为德布罗这种波称为德布罗意波,也叫物质波。意波,也叫物质波。Phl l德布罗意德布罗意公式公式如速度如速度v=5.0 102m/s飞行的子飞行的子弹,质量为弹,质量为m=10-2Kg,对应的对应

    4、的德布罗意波长为:德布罗意波长为:nmmvh25103.1 l l如电子如电子m=9.1 10-31Kg,速,速度度v=5.0 107m/s,对应的德对应的德布罗意波长为:布罗意波长为:nmmvh2104.1 l l太小测不到!太小测不到!X射线射线波段波段电子驻波电子驻波例题例题1:从德布:从德布罗意波导出氢原子波尔理论中的角动量量子化条件。罗意波导出氢原子波尔理论中的角动量量子化条件。德布德布罗意把原子定态与驻波联系起来,即把能量量子化与有限空间罗意把原子定态与驻波联系起来,即把能量量子化与有限空间驻波的波长和频率联系起来。如电子绕原子一周,驻波应衔接,所驻波的波长和频率联系起来。如电子绕

    5、原子一周,驻波应衔接,所以圆周长应等于波长的整数倍。以圆周长应等于波长的整数倍。lnr 2ph l l再根据德布再根据德布罗意关系罗意关系得出角动量量子化条件得出角动量量子化条件nrhp 2 nnhrpL 2二、二、德布德布罗意波罗意波的实验验证的实验验证1 1、戴维逊、戴维逊-革末实验革末实验GMK戴维逊和革末的实验是用电子束垂直投射到镍单晶,电子束被戴维逊和革末的实验是用电子束垂直投射到镍单晶,电子束被散射。其强度分布可用德布罗意关系和衍射理论给以解释,从散射。其强度分布可用德布罗意关系和衍射理论给以解释,从而验证了物质波的存在。而验证了物质波的存在。1937年他们与年他们与G.P.汤姆孙

    6、汤姆孙一起获得一起获得Nobel物理学奖。物理学奖。实验装置:实验装置:电子从灯丝电子从灯丝K飞出,经电势飞出,经电势差为差为U的加速电场,通过狭的加速电场,通过狭缝后成为很细的电子束,投缝后成为很细的电子束,投射到晶体射到晶体M上,散射后进入上,散射后进入电子探测器,由电流计电子探测器,由电流计G测测量出电流。量出电流。实验现象:实验现象:实验发现,单调地增加加速电压,实验发现,单调地增加加速电压,电子探测器的电流并不是单调地增电子探测器的电流并不是单调地增加的,而是出现明显的选择性。例加的,而是出现明显的选择性。例如,只有在加速电压如,只有在加速电压U=54V,且且=50=500 0时,探

    7、测器中的电流才有极大时,探测器中的电流才有极大值。值。/2/2/2/2dl l kd 2cos2sin22l l kd sin实验解释:实验解释:当加速电压当加速电压U=54V,加速电子的能量,加速电子的能量eU=mv2/2,电子的德布罗意波长为,电子的德布罗意波长为nmmeUhph7.162 l l54U(V)IOmeUkhd2sin X射线实验测得镍单晶的晶格常数射线实验测得镍单晶的晶格常数d=0.215nm777.0arcsin 实验结果:实验结果:理论值理论值(=50=500 0)与实验结果与实验结果(=51=510 0)相差很小,表明电子电子确相差很小,表明电子电子确实具有波动性,德

    8、布罗意关于实物具有波动性的假设是正确的。实具有波动性,德布罗意关于实物具有波动性的假设是正确的。meUdkh21sin o51777.0arcsin 2 2、汤姆逊实验、汤姆逊实验1927年,汤姆逊在实验中,让电子束年,汤姆逊在实验中,让电子束通过薄金属笛后射到照相底线上,结通过薄金属笛后射到照相底线上,结果发现,与果发现,与X射线通过金箔时一样,射线通过金箔时一样,也产生了清晰的电子衍射图样。也产生了清晰的电子衍射图样。1993年,年,Crommie等人用扫描隧道显微等人用扫描隧道显微镜技术,把蒸发到铜(镜技术,把蒸发到铜(111)表面上的)表面上的铁原子排列成半径为铁原子排列成半径为7.1

    9、3nm的圆环形的圆环形量子围栏,用实验观测到了在围栏内形量子围栏,用实验观测到了在围栏内形成的同心圆状的驻波成的同心圆状的驻波(“量子围栏量子围栏”),直观地证实了电子的波动性。直观地证实了电子的波动性。3 3、电子通过狭缝的衍射实验:、电子通过狭缝的衍射实验:1961年,约恩孙年,约恩孙(Jonsson)制成长为制成长为50m mm,宽为,宽为0.3m mm,缝间,缝间距为距为1.0m mm的多缝。用的多缝。用50V的加速电压加速电子,使电子束分的加速电压加速电子,使电子束分别通过单缝、双缝等,均得到衍射图样。别通过单缝、双缝等,均得到衍射图样。中子衍射中子衍射射线衍射射线衍射XX射线经晶体

    10、的衍射图射线经晶体的衍射图电子射线经晶体的衍射图电子射线经晶体的衍射图由于电子波长比可见光波长小由于电子波长比可见光波长小10-310-5数量级,数量级,从而从而可大大提高电子显微镜的分辨率。可大大提高电子显微镜的分辨率。1932年,德国的鲁斯卡研制成功电子显微镜。年,德国的鲁斯卡研制成功电子显微镜。我国已制成我国已制成80万倍的电子显微镜,分辨率为万倍的电子显微镜,分辨率为14.4nm.n,能分辨大个分子有着广泛的应用前景。能分辨大个分子有着广泛的应用前景。三、应用举例三、应用举例1 1、电子显微镜、电子显微镜2 2、扫描隧道显微镜、扫描隧道显微镜1981年,德国的宾尼希和瑞士的罗雷尔制成了

    11、扫描隧道年,德国的宾尼希和瑞士的罗雷尔制成了扫描隧道显微镜,他们两人因此与鲁斯卡共获显微镜,他们两人因此与鲁斯卡共获1986年的诺贝尔物年的诺贝尔物理学奖金。其横向分辨率可得理学奖金。其横向分辨率可得0.1nm,纵向分辨率可得,纵向分辨率可得0.001nm,它在纳米材料、生命科学和微电子学中起着,它在纳米材料、生命科学和微电子学中起着不可估量的作用。不可估量的作用。四、德布罗意波的统计解释四、德布罗意波的统计解释1 1、光的衍射、光的衍射根据光的波动性,光是一种电磁波,在衍射图样中,亮处波根据光的波动性,光是一种电磁波,在衍射图样中,亮处波的强度大,暗处波的强度小。而波的强度与振幅的平方成正的

    12、强度大,暗处波的强度小。而波的强度与振幅的平方成正比,所以比,所以衍射图样中,亮处的波的振幅的平方大,暗处的波衍射图样中,亮处的波的振幅的平方大,暗处的波的振幅平方小的振幅平方小。根据光的粒子性:某处光的强度大,表示根据光的粒子性:某处光的强度大,表示单位时间内到达该单位时间内到达该处的光子数多处的光子数多;某处光的强度小,表示;某处光的强度小,表示单位时间内到达该处单位时间内到达该处的光子数少的光子数少。从统计的观点来看:相当于光子到达亮处的概率要远大于光从统计的观点来看:相当于光子到达亮处的概率要远大于光子到达暗处的概率。因此可以说,粒子在某处出现附近出现子到达暗处的概率。因此可以说,粒子

    13、在某处出现附近出现的概率是与该处波的强度成正比的,而波的强度与波的振幅的概率是与该处波的强度成正比的,而波的强度与波的振幅的平方成正比,所以也可以说,的平方成正比,所以也可以说,粒子在某处附近出现的概率粒子在某处附近出现的概率是与该处的波的振幅的平方成正比的是与该处的波的振幅的平方成正比的。2 2德布罗意波统计解释德布罗意波统计解释从粒子的观点看,衍射图样的出现,是由于电子不均匀地射从粒子的观点看,衍射图样的出现,是由于电子不均匀地射向照相底片各处形成的,有些地方电子密集,有些地方电子向照相底片各处形成的,有些地方电子密集,有些地方电子稀疏,表示电子射到各处的概率是不同的,电子密集的地方稀疏,

    14、表示电子射到各处的概率是不同的,电子密集的地方概率大,电子稀疏的地方概率小。概率大,电子稀疏的地方概率小。从波动的观点来看,电子密集的地方表示波的强度大,电子从波动的观点来看,电子密集的地方表示波的强度大,电子稀疏的地方表示波的强度小,所以,某处附近电子出现的概稀疏的地方表示波的强度小,所以,某处附近电子出现的概率就反映了在该处德布罗意波的强度。对电子是如此,对其率就反映了在该处德布罗意波的强度。对电子是如此,对其它粒子也是如此。它粒子也是如此。普遍地说,普遍地说,在某处德布罗意波的振幅平方是与粒子在该处出在某处德布罗意波的振幅平方是与粒子在该处出现的概率成正比的。现的概率成正比的。这就是这就

    15、是德布罗意波的统计解释德布罗意波的统计解释。3 3德布罗意波与经典波的不同德布罗意波与经典波的不同机械波机械波机械振动在空间的传播机械振动在空间的传播德布罗意波德布罗意波是对微观粒子运动的统计描述,它的振幅是对微观粒子运动的统计描述,它的振幅的平方表示粒子出现的概率,故是概率波。的平方表示粒子出现的概率,故是概率波。*用电子双缝衍射实验说明概率波的含义用电子双缝衍射实验说明概率波的含义(1)人射强电子流人射强电子流干涉花样干涉花样取决于概取决于概率分布,率分布,而概率分而概率分布是确定布是确定的。的。(2)人射弱人射弱电子流电子流电子干涉不电子干涉不是电子之间是电子之间相互作用引相互作用引起的

    16、,是电起的,是电子自己和自子自己和自己干涉的结己干涉的结果。果。例例2.计算下列运动物质的德布罗意波长计算下列运动物质的德布罗意波长(1)质量质量100g,v=10ms 1运动的小球。运动的小球。m10625.61010.010625.63434 mvhPhl l(2)以以 2.0 103ms 1速度运动的质子。速度运动的质子。m100.2100.21067.110625.61032734 mvhl l(3)动能为动能为 1.6 10 7 J 的电子的电子mPmvEK22122 KmEP2 m102.12103 KmEhPhl l19-7 不确定关系不确定关系海森伯(海森伯(W.K.Heise

    17、nberg,1901-1976)德国理论物理学家。他于德国理论物理学家。他于1925年为量子力学年为量子力学的创立作出了最早的贡献,而于的创立作出了最早的贡献,而于25岁时提出岁时提出的不确定关系则与物质波的概率解释一起奠的不确定关系则与物质波的概率解释一起奠定了量子力学的基础。为此,他于定了量子力学的基础。为此,他于1932年获年获得诺贝尔物理学奖金。得诺贝尔物理学奖金。一、引入一、引入经典力学,粒子的运动具有决定性的规律,原则上说可经典力学,粒子的运动具有决定性的规律,原则上说可同时用确定的坐标与确定的动量来描述宏观物体的运动。同时用确定的坐标与确定的动量来描述宏观物体的运动。在量子概念下

    18、,电子和其它物质粒子的衍射实验表明,在量子概念下,电子和其它物质粒子的衍射实验表明,粒子束所通过的圆孔或单缝越窄小,则所产生的衍射图粒子束所通过的圆孔或单缝越窄小,则所产生的衍射图样的区域越大。样的区域越大。二、电子单缝衍射二、电子单缝衍射bx 电子通过单缝位电子通过单缝位置的不确定范围置的不确定范围OCDxyxA2衍射图样pxpy p缝屏幕电子由于衍射,电子动量的大小不变,但是其方向发生了改变。由于衍射,电子动量的大小不变,但是其方向发生了改变。考虑电子被限制在一级最小的衍射角范围内,有考虑电子被限制在一级最小的衍射角范围内,有j j=l l/b,因,因此动量在此动量在 Ox轴上的分量的不确

    19、定度为轴上的分量的不确定度为bpppxl l sinbhpx 由德布罗意关系:由德布罗意关系:ph l lhpxx hpxx 即即对于微观粒子不能同时用确定的位置和确定的动量莱描述对于微观粒子不能同时用确定的位置和确定的动量莱描述,这就是这就是不确定关系不确定关系,也叫,也叫不确定原理不确定原理,是,是1927年年海森伯海森伯提出的。提出的。它是自然界的客观规律,不是测量技术和主观能力的问题,是它是自然界的客观规律,不是测量技术和主观能力的问题,是量子理论中的一个重要概念。量子理论中的一个重要概念。OCDxyxA2衍射图样pxpy p缝屏幕电子上述讨论只是反映不确定关系的实质,并不表示准确的量

    20、值关上述讨论只是反映不确定关系的实质,并不表示准确的量值关系。量子力学严格证明给出:系。量子力学严格证明给出:2/xpx x表示表示粒子在粒子在x方向上的位置的不确定范围,方向上的位置的不确定范围,px表示在表示在x方向上动量的不确定范围,其方向上动量的不确定范围,其乘积不得小于一个常数。乘积不得小于一个常数。2 Et若一个粒子的能量状态是完全确定的,即若一个粒子的能量状态是完全确定的,即 E=0,则粒子停留在该态的时间为无限长,则粒子停留在该态的时间为无限长,t=。三、不确定关系的数学表示与物理意义三、不确定关系的数学表示与物理意义 2h 例题例题1:一颗质量为:一颗质量为10g的子弹,具有

    21、的子弹,具有200m/s的速度,动量的不的速度,动量的不确定量为确定量为0.01%,问在确定该子弹的位置时,有多大的不确定,问在确定该子弹的位置时,有多大的不确定范围?范围?解:子弹的动量为解:子弹的动量为1smkg220001.0 mvp子弹的动量的不确定量为子弹的动量的不确定量为14smkg102%01.0 pp由不确定关系,可以得到子弹位置的不确定范围为由不确定关系,可以得到子弹位置的不确定范围为m1032.31021063.630434 phx这个不确定范围是微不足道的,可见不确定关系对宏观物这个不确定范围是微不足道的,可见不确定关系对宏观物体来说,实际上是不起作用的。体来说,实际上是

    22、不起作用的。例题例题2:一电子具有具有:一电子具有具有200m/s的速率,动量的不确定量为的速率,动量的不确定量为0.01%,问在确定该电子的位置时,有多大的不确定范围?,问在确定该电子的位置时,有多大的不确定范围?解:电子的动量为解:电子的动量为12831smkg108.1200101.9 mvp子弹的动量的不确定量为子弹的动量的不确定量为132smkg108.1%01.0 pp由不确定关系,可以得到子弹位置的不确定范围为由不确定关系,可以得到子弹位置的不确定范围为mphx23234107.3108.11063.6 我们知道原子大小的数量级为我们知道原子大小的数量级为10-10m,电子则更小

    23、。在这,电子则更小。在这种情况下,种情况下,电子位置的不确定范围比电子本身的大小要大电子位置的不确定范围比电子本身的大小要大几亿倍以上。几亿倍以上。四、不确定关系的应用四、不确定关系的应用 1 1、估算氢原子可能具有的最低能量估算氢原子可能具有的最低能量电子束缚在半径为电子束缚在半径为r 的球内,所以的球内,所以rx rpp/按不确定关系按不确定关系rp/rempEoe 4222 当不计核的运动,氢原子的能量就是电子的能量:当不计核的运动,氢原子的能量就是电子的能量:代入上式得:代入上式得:rermEoe 42222 mmehreoo10221053.0 基态能应满足:基态能应满足:0 dtd

    24、E042232 rermoe 由此得出基态氢原子半径:由此得出基态氢原子半径:基态氢原子的能量:基态氢原子的能量:eVhmeEoe6.138224min 与波尔理论结果一致。与波尔理论结果一致。本例还说明:本例还说明:量子体系有所谓的零点能。量子体系有所谓的零点能。2 2、解释谱线的自然宽度解释谱线的自然宽度HzthE71059.121 n ns108 t原子中某激发态的平均寿命为原子中某激发态的平均寿命为普朗克普朗克能量子假说能量子假说不确定关系不确定关系谱线的谱线的自然宽度自然宽度2 Etn nhE 它能它能解释谱线的自然宽度。解释谱线的自然宽度。e-和和e+等粒子在气泡室径迹等粒子在气泡

    25、室径迹例例2 2在威尔逊云室(或气泡室)可看到一在威尔逊云室(或气泡室)可看到一条白亮的带状的痕迹条白亮的带状的痕迹粒子的径迹粒子的径迹x10-4ph/x 10-30 1MeV p10-23p p小小 结结 德布罗意波德布罗意波 实物粒子的二象性实物粒子的二象性 德布罗意假设德布罗意假设 德布德布罗意波罗意波的实验验证的实验验证 应用举例应用举例 德布罗意波的统计解释德布罗意波的统计解释 不确定关系不确定关系 引入引入 电子单缝衍射电子单缝衍射 不确定关系的数学表示与物理意义不确定关系的数学表示与物理意义 不确定关系的应用不确定关系的应用作业:作业:思考题:思考题:P309 26,27,28,29 习习 题:题:P311 16,20,22,24 预预 习:习:19-8

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:大学物理学电子教案量子物理德布罗意课件.ppt
    链接地址:https://www.163wenku.com/p-5090631.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库