高等数学9二重积分课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学9二重积分课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 二重积分 课件
- 资源描述:
-
1、柱体体积柱体体积=底面积底面积高高特点特点:平顶:平顶.柱体体积柱体体积=?特点特点:曲顶:曲顶.),(yxfz D曲顶柱体的体积曲顶柱体的体积一、问题的提出一、问题的提出播放播放 求曲顶柱体的体积采用求曲顶柱体的体积采用“分割、求和分割、求和、取极限、取极限”的方法,如下动画演示的方法,如下动画演示步骤如下:步骤如下:用若干个小平用若干个小平顶柱体体积之顶柱体体积之和近似表示曲和近似表示曲顶柱体的体积,顶柱体的体积,xzyoD),(yxfz i),(ii先分割曲顶柱体的底,先分割曲顶柱体的底,并取典型小区域,并取典型小区域,.),(lim10iiniifV 曲顶柱体的体积曲顶柱体的体积 设设
2、有有一一平平面面薄薄片片,占占有有xoy面面上上的的闭闭区区域域D,在在点点),(yx处处的的面面密密度度为为),(yx,假假定定),(yx 在在D上上连连续续,平平面面薄薄片片的的质质量量为为多多少少?求平面薄片的质量求平面薄片的质量i),(ii将薄片分割成若干小块,将薄片分割成若干小块,取典型小块,将其近似取典型小块,将其近似看作均匀薄片,看作均匀薄片,所有小块质量之和所有小块质量之和近似等于薄片总质量近似等于薄片总质量.),(lim10iiniiM xyo定义定义 设设),(yxf是有界闭区域是有界闭区域D上的有界函上的有界函数,将闭区域数,将闭区域D任意分成任意分成n个小闭区域个小闭区
3、域1 ,,2 ,n ,其中,其中i 表示第表示第i个小闭区域,个小闭区域,也表 示它 的 面积,在每 个也表 示它 的 面积,在每 个i 上 任取 一点上 任取 一点),(ii ,作乘积作乘积 ),(iif i ,),2,1(ni,并作和并作和 iiniif ),(1,二、二重积分的概念二、二重积分的概念如果当各小闭区域的直径中的最大值如果当各小闭区域的直径中的最大值 趋近于零趋近于零时,这和式的极限存在,则称此极限为函数时,这和式的极限存在,则称此极限为函数),(yxf在闭区域在闭区域 D D 上的上的二重积分二重积分,记为记为 Ddyxf),(,即即 Ddyxf),(iiniif ),(l
4、im10.(1)在二重积分的定义中,对闭区域的划分是在二重积分的定义中,对闭区域的划分是任意的任意的.(2)当当),(yxf在闭区域上连续时,定义中和式在闭区域上连续时,定义中和式的极限必存在,即二重积分必存在的极限必存在,即二重积分必存在.对二重积分定义的说明:对二重积分定义的说明:二重积分的几何意义二重积分的几何意义当被积函数大于零时,二重积分是柱体的体积当被积函数大于零时,二重积分是柱体的体积当被积函数小于零时,二重积分是柱体的体积的当被积函数小于零时,二重积分是柱体的体积的负值负值 在直角坐标系下用平在直角坐标系下用平行于坐标轴的直线网来划行于坐标轴的直线网来划分区域分区域D,DDdx
5、dyyxfdyxf),(),(dxdyd 故二重积分可写为故二重积分可写为xyo则面积元素为则面积元素为性质性质当当 为常数时为常数时,k.),(),(DDdyxfkdyxkf 性质性质 Ddyxgyxf),(),(.),(),(DDdyxgdyxf (二重积分与定积分有类似的性质)(二重积分与定积分有类似的性质)三、二重积分的性质三、二重积分的性质性质性质对区域具有可加性对区域具有可加性.),(),(),(21 DDDdyxfdyxfdyxf 性质性质 若若 为为D的面积,的面积,.1 DDdd 性质性质 若在若在D上上),(),(yxgyxf.),(),(DDdyxgdyxf 特殊地特殊地
6、.),(),(DDdyxfdyxf )(21DDD 则有则有 设设M、m分分别别是是),(yxf在在闭闭区区域域 D 上上的的最最大大值值和和最最小小值值,为为 D 的的面面积积,则则性质性质 设设函函数数),(yxf在在闭闭区区域域D上上连连续续,为为D的的面面积积,则则在在 D 上上至至少少存存在在一一点点),(使使得得性质性质(二重积分中值定理)(二重积分中值定理)DMdyxfm),(),(),(fdyxfD(二重积分估值不等式)(二重积分估值不等式)例例 1 1 不不作作计计算算,估估计计 deIDyx )(22的的值值,其其中中D是是椭椭圆圆闭闭区区域域:12222 byax )0(
7、ab .在在D上上 2220ayx ,12220ayxeee 由由性性质质 6 知知,222)(aDyxede 解解 deDyx)(22 ab.2aeab 区区域域 D的的面面积积 ,ab例例 2 2 估估计计 DxyyxdI16222 的的值值,其其中中 D:20,10 yx.区域面积区域面积2 ,16)(1),(2 yxyxf在在D上上),(yxf的的最最大大值值)0(41 yxM),(yxf的的最最小小值值5143122 m)2,1(yx 故故4252 I.5.04.0 I解解例例 3 3 判断判断 122)ln(yxrdxdyyx的符号的符号.当当1 yxr时时,1)(0222 yxy
8、x故故 0)ln(22 yx;又又当当 1 yx时时,0)ln(22 yx于是于是0)ln(122 yxrdxdyyx.解解例例 4 4 比较积分比较积分 Ddyx)ln(与与 Ddyx 2)ln(的大小的大小,其中其中 D 是三角形闭区域是三角形闭区域,三顶点各为三顶点各为(1,0),(1,1),(2,0).解解三三角角形形斜斜边边方方程程2 yx在在 D 内内有有 eyx 21,故故 1)ln(yx,于于是是 2)ln()ln(yxyx ,因因此此 Ddyx)ln(Ddyx 2)ln(.oxy121D二重积分的定义二重积分的定义二重积分的性质二重积分的性质二重积分的几何意义二重积分的几何意
9、义(曲顶柱体的体积)(曲顶柱体的体积)(和式的极限)(和式的极限)四、小结四、小结思考题思考题 将二重积分定义与定积分定义进行比较,将二重积分定义与定积分定义进行比较,找出它们的相同之处与不同之处找出它们的相同之处与不同之处.定积分与二重积分都表示某个和式的极限定积分与二重积分都表示某个和式的极限值,且此值只与被积函数及积分区域有关不值,且此值只与被积函数及积分区域有关不同的是定积分的积分区域为区间,被积函数为同的是定积分的积分区域为区间,被积函数为定义在区间上的一元函数,而二重积分的积分定义在区间上的一元函数,而二重积分的积分区域为平面区域,被积函数为定义在平面区域区域为平面区域,被积函数为
10、定义在平面区域上的二元函数上的二元函数思考题解答思考题解答一、一、填空题填空题:1 1、当函数当函数),(yxf在闭区域在闭区域D上上_时时,则其在则其在D上的二重积分必定存在上的二重积分必定存在.2 2、二 重 积 分二 重 积 分 Ddyxf),(的 几 何 意 义 是的 几 何 意 义 是_._.3 3、若若),(yxf在 有 界 闭 区 域在 有 界 闭 区 域D上 可 积上 可 积,且且21DDD ,当当0),(yxf时时,则则 1),(Ddyxf _ 2),(Ddyxf;当当0),(yxf时时,则则 1),(Ddyxf _ 2),(Ddyxf .练练 习习 题题4 4、Ddyx)s
11、in(22_,其中其中 是圆域是圆域 2224 yx的面积的面积,16.二、二、利用二重积分定义证明利用二重积分定义证明:DDdyxfkdyxkf ),(),(.(.(其中其中k为常数为常数)三、三、比较下列积分的大小比较下列积分的大小:1 1、DDdyxdyx 322)()(与与,其中其中D是由圆是由圆 2)1()2(22 yx所围成所围成.2 2、dyxdyxD2)ln()ln(与与,其中其中D是矩形是矩形 闭区域闭区域:10,53 yx.四四、估估计计积积分分 DdyxI)94(22的的值值,其其中中D是是圆圆 形形区区域域:422 yx .一、一、1 1、连续;、连续;2 2、以、以)
12、,(yxfz 为曲顶为曲顶,以以D为底的曲顶柱体体积为底的曲顶柱体体积 的代数和;的代数和;3 3、,;4 4、.三、三、1 1、DDdyxdyx 32)()(;2 2、dyxdyxD2)ln()ln(.四、四、100)94(3622dyx.练习题答案练习题答案 求曲顶柱体的体积采用求曲顶柱体的体积采用“分割、求和分割、求和、取极限、取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用“分割、求和分割、求和、取极限、取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用“分割、求和分割、求和、取极限、取极限”的方法,如下
13、动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用“分割、求和分割、求和、取极限、取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用“分割、求和分割、求和、取极限、取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用“分割、求和分割、求和、取极限、取极限”的方法,如下动画演示的方法,如下动画演示如果积分区域为:如果积分区域为:,bxa ).()(21xyx 其中函数其中函数 、在区间在区间 上连续上连续.)(1x)(2x,ba一、利用直角坐标系计算二重积分一、利用直角坐标系计算二重积分X型型)(2
14、xy abD)(1xy Dba)(2xy )(1xy 为曲顶柱体的体积为曲顶柱体的体积为底,以曲面为底,以曲面的值等于以的值等于以),(),(yxfzDdyxfD 应用计算应用计算“平行截平行截面面积为已知的立面面积为已知的立体求体积体求体积”的方法的方法,a0 xbzyx)(0 xA),(yxfz)(1xy)(2xy.),(),()()(21 Dbaxxdyyxfdxdyxf 得得.),(),()()(21 Ddcyydxyxfdydyxf 如果积分区域为:如果积分区域为:,dyc ).()(21yxy Y型型)(2yx )(1yx Dcdcd)(2yx )(1yx D X型区域的特点型区域
15、的特点:穿过区域且平行于穿过区域且平行于y轴的直轴的直线与区域边界相交不多于两个交点线与区域边界相交不多于两个交点.Y型区域的特点型区域的特点:穿过区域且平行于穿过区域且平行于x轴的直轴的直线与区域边界相交不多于两个交点线与区域边界相交不多于两个交点.若区域如图,若区域如图,3D2D1D在分割后的三个区域上分别在分割后的三个区域上分别使用积分公式使用积分公式.321 DDDD则必须分割则必须分割.xy 1例例 1 1 改改变变积积分分 xdyyxfdx1010),(的的次次序序.原原式式 ydxyxfdy1010),(.解解积分区域如图积分区域如图xy 222xxy 例例 2 2 改改变变积积
16、分分 xxxdyyxfdxdyyxfdx20212010),(),(2的的次次序序.原原式式 102112),(yydxyxfdy.解解积分区域如图积分区域如图例例 3 3 改变积分改变积分)0(),(20222 adyyxfdxaaxxax 的次序的次序.axy2 解解=ayaaaydxyxfdy02222),(原式原式 aayaadxyxfdy0222),(.),(2222 aaaaydxyxfdy22xaxy 22yaax a2aa2a例例 4 4 求求 Ddxdyyx)(2,其中,其中D是由抛物线是由抛物线2xy 和和2yx 所围平面闭区域所围平面闭区域.解解两两曲曲线线的的交交点点)
17、,1,1(,)0,0(22 yxxy Ddxdyyx)(2 1022)(xxdyyxdxdxxxxxx)(21)(42102 .14033 2xy 2yx 2xy 2yx 例例5 5 求求 Dydxdyex22,其其中中 D 是是以以),1,1(),0,0()1,0(为为顶顶点点的的三三角角形形.dyey2无法用初等函数表示无法用初等函数表示解解 积积分分时时必必须须考考虑虑次次序序 Dydxdyex22 yydxexdy02102dyyey 10332210262dyyey ).21(61e 例例 6 6 计计算算积积分分 yxydxedyI212141 yyxydxedy121.解解 dx
18、exy不不能能用用初初等等函函数数表表示示先先改改变变积积分分次次序序.原原式式 xxxydyedxI2211 121)(dxeexx.2183ee 2xy xy 例例 7 7 求由下列曲面所围成的立体体积,求由下列曲面所围成的立体体积,yxz ,xyz ,1 yx,0 x,0 y.解解曲面围成的立体如图曲面围成的立体如图.,10 yx,xyyx 所求体积所求体积 DdxyyxV)(1010)(xdyxyyxdx 103)1(21)1(dxxxx.247 所所围围立立体体在在xoy面面上上的的投投影影是是二重积分在直角坐标下的计算公式二重积分在直角坐标下的计算公式(在积分中要正确选择(在积分中
19、要正确选择积分次序积分次序)二、小结二、小结.),(),()()(21 Dbaxxdyyxfdxdyxf .),(),()()(21 Ddcyydxyxfdydyxf Y型型X型型设设)(xf在在1,0上上连连续续,并并设设Adxxf 10)(,求求 110)()(xdyyfxfdx.思考题思考题 1)(xdyyf不能直接积出不能直接积出,改改变变积积分分次次序序.令令 110)()(xdyyfxfdxI,思考题解答思考题解答则原式则原式 ydxyfxfdy010)()(.,)()(010 xdyyfdxxf故故 110)()(2xdyyfdxxfI xdyyfdxxf010)()()()()
20、(1010dyyfdxxfxx .)()(21010Adyyfdxxf 一、一、填空题填空题:1 1、Ddyyxx)3(323_._.其中其中 .10,10:yxD 2 2、Ddyxx)cos(_._.其中其中D是顶是顶 点分别为点分别为 )0,0(,)0,(,),(的三角形闭区域的三角形闭区域.3 3、将二重积分、将二重积分 Ddyxf),(,其中其中D是由是由x轴及半圆周轴及半圆周)0(222 yryx所围成的闭区域所围成的闭区域,化为先对化为先对y后对后对x的二次积分的二次积分,应为应为_._.练练 习习 题题 4 4、将二重积分、将二重积分 Ddyxf),(,其中其中D是由直线是由直线
21、 2,xxy及双曲线及双曲线)0(1 xxy所围成的闭区所围成的闭区 域域,化为先对化为先对x后对后对y的二次积分的二次积分,应为应为 _._.5 5、将将二二次次积积分分 22221),(xxxdyyxfdx改改换换积积分分次次序序,应应为为_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.6 6、将将二二次次积积分分 xxdyyxfdxsin2sin0),(改改换换积积分分次次序序,应应为为_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.7 7、将将二二次次积积分分 2ln1),(
22、2yedxyxfdy 2)1(2112),(ydxyxfdy改改换换积积分分次次序序,应应为为_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.二、画出积分区域二、画出积分区域,并计算下列二重积分并计算下列二重积分:1 1、Dyxde,其中其中D是由是由1 yx所确定的闭区域所确定的闭区域.2 2、Ddxyx)(22其中其中D是由直线是由直线 xyxyy2,2 及及所围成的闭区域所围成的闭区域.3 3、xDdyyxxydxdyxf020)(2(cos),(。4 4、,2 Ddxdyxy其中其中D:20,11 yx.三、设平面薄片所占的闭
23、区域三、设平面薄片所占的闭区域D由直线由直线,2 yxxy 和和x轴所围成轴所围成,它的面密度它的面密度22),(yxyx ,求该求该薄片的质量薄片的质量.四、四、求由曲面求由曲面222yxz 及及2226yxz ,所围成的所围成的立体的体积立体的体积.一、一、1 1、1 1;2 2、23 ;3 3、220),(xrrrdyyxfdx;4 4、22121121),(),(yydxyxfdydxyxfdy;5 5、211210),(yydxyxfdy;6 6、yyydxyxfdydxyxfdyarcsinarcsin10arcsin201),(),(;7 7、21120),(xexdyyxfdx
24、.练习题答案练习题答案二、二、1 1、1 ee;2 2、613;3 3、;4 4、235 .三、三、34.四、四、6.AoDiirr iirrriiiiiiiiirrr 2221)(21iiiirrr )2(21iiiiirrrr 2)(,iiirr .)sin,cos(),(DDrdrdrrfdxdyyxf 一、利用极坐标系计算二重积分一、利用极坐标系计算二重积分.)sin,cos()()(21 rdrrrfd ADo)(1 r)(2 r Drdrdrrf )sin,cos(二重积分化为二次积分的公式()二重积分化为二次积分的公式()区域特征如图区域特征如图,).()(21 r区域特征如图区
25、域特征如图,).()(21 r.)sin,cos()()(21 rdrrrfd Drdrdrrf )sin,cos(AoD)(2r)(1rAoD)(r.)sin,cos()(0 rdrrrfd二重积分化为二次积分的公式()二重积分化为二次积分的公式()区域特征如图区域特征如图,).(0 r Drdrdrrf )sin,cos(Drdrdrrf )sin,cos(.)sin,cos()(020 rdrrrfd极坐标系下区域的面积极坐标系下区域的面积.Drdrd 二重积分化为二次积分的公式()二重积分化为二次积分的公式()区域特征如图区域特征如图).(0 rDoA)(r,2 0例例1 1 写写出出
展开阅读全文