高二数学课件:排列组合综合应用问题.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高二数学课件:排列组合综合应用问题.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 课件 排列组合 综合 应用 问题 下载 _其他_数学_高中
- 资源描述:
-
1、 引入:引入:前面我们已经学习和掌握了排列组合问题前面我们已经学习和掌握了排列组合问题的求解方法,下面我们要在复习、巩固已掌握的方的求解方法,下面我们要在复习、巩固已掌握的方法的基础上,学习和讨论排列、组合的综合问题。法的基础上,学习和讨论排列、组合的综合问题。和应用问题。和应用问题。问题:解决排列组合问题一般有哪些方法?应注问题:解决排列组合问题一般有哪些方法?应注意什么问题?意什么问题?解排列组合问题时,当问题分成互斥各类时,根解排列组合问题时,当问题分成互斥各类时,根据加法原理,可用据加法原理,可用分类法分类法;当问题考虑先后次序时,;当问题考虑先后次序时,根据乘法原理,可用根据乘法原理
2、,可用位置法位置法;上述两种称;上述两种称“直接直接法法”,当问题的反面简单明了时,可通过求差排除法当问题的反面简单明了时,可通过求差排除法,采用采用“间接法间接法”;另外,排列中;另外,排列中“相邻相邻”问题可采问题可采用用捆绑法捆绑法;“分离分离”问题可用问题可用插空法插空法等。等。解排列组合问题,一定要做到解排列组合问题,一定要做到“不重不重”、“不漏不漏”。分为三组,一组分为三组,一组5人,一组人,一组4人,一组人,一组3人;人;分为甲、乙、丙三组,甲组分为甲、乙、丙三组,甲组5人,乙组人,乙组4人,人,丙组丙组3人;人;分为甲、乙、丙三组,一组分为甲、乙、丙三组,一组5人,一组人,一
3、组4人,一组人,一组3人;人;分为甲、乙、丙三组,每组分为甲、乙、丙三组,每组4人;人;分为三组,每组分为三组,每组4人。人。例例1:有有12 人。按照下列要求分配,求不同的人。按照下列要求分配,求不同的分法种数。分法种数。答案答案C125.C74.C33 C125.C74.C33 C125.C74.C33.A33C124.C84.C44分成三组,其中一组分成三组,其中一组2人,另外两组都是人,另外两组都是 5人。人。C122.C105.C55 A22 C124.C84.C44 A33 小结小结:练习练习1说明了非平均分配、平均分配以及部分平说明了非平均分配、平均分配以及部分平均分配问题。均分
4、配问题。1.非平均分配问题中,没有给出组名与给出非平均分配问题中,没有给出组名与给出组名是一样的,可以直接分步求;给出了组名组名是一样的,可以直接分步求;给出了组名而没指明哪组是几个,可以在而没指明哪组是几个,可以在没有给出组名没有给出组名(或给出组名但不指明各组多少个)种数的(或给出组名但不指明各组多少个)种数的基础上基础上乘以乘以组数的全排列数。组数的全排列数。2.平均分配问题中,平均分配问题中,给出组名的分步求;给出组名的分步求;若没给出组名的,若没给出组名的,一定要在给出组名的基础上一定要在给出组名的基础上除以除以组数的全排列数。组数的全排列数。3.部分平均分配问题中,先考虑不平均分配
5、,剩下的就是部分平均分配问题中,先考虑不平均分配,剩下的就是 平均分配。这样分配问题就解决了。平均分配。这样分配问题就解决了。结论结论:给出组名:给出组名(非平均中未指明非平均中未指明各组个数)的要在未给出组名的种各组个数)的要在未给出组名的种数的基础上,乘以组数的阶乘。数的基础上,乘以组数的阶乘。例例2:求不同的排法种数。求不同的排法种数。6男男2女排成一排,女排成一排,2女相邻;女相邻;6男男2女排成一排,女排成一排,2女不能相邻;女不能相邻;4男男4女排成一排,同性者相邻;女排成一排,同性者相邻;4男男4女排成一排,同性者不能相邻。女排成一排,同性者不能相邻。分析:分析:由由2女捆绑成一
6、人与女捆绑成一人与6男全排列男全排列,再把再把2女全排列,女全排列,有有A77.A22种种 “捆绑法捆绑法”把把6男男2女女8人全排列,扣去人全排列,扣去 2 女女“相邻相邻”就是就是2女女“不相邻不相邻”,所以有,所以有A88-A77.A22种。种。“排除法排除法”还可用还可用“插空法插空法”直接求解:先把直接求解:先把6男全排列,男全排列,再在再在6男相邻的男相邻的7个空位中排个空位中排2女,所以共有女,所以共有A66.A72种种.分分 离离 排排 列列 问问 题题思考思考:对于不相邻的分离排列能否都用对于不相邻的分离排列能否都用“排除法排除法”?若改若改5男男3女女排成一列排成一列,3女
7、不相邻女不相邻,用排除法得用排除法得 对吗对吗?22553388AAAA 4男男4女排成一列,同性者相邻,把女排成一列,同性者相邻,把4男、男、4女女捆绑成一个排列,然后同性者之间再全排列,所捆绑成一个排列,然后同性者之间再全排列,所在地共有在地共有A22.A44.A44种。种。“捆绑法捆绑法”同性不相邻必须男女都排好,即男奇数位,同性不相邻必须男女都排好,即男奇数位,女偶数位,或者对调。女偶数位,或者对调。总排列数为总排列数为A22.A44.A44种种。例例3:某乒乓球队有某乒乓球队有8男男7女共女共15名队员,现进名队员,现进行混合双打训练,两边都必须要行混合双打训练,两边都必须要1男男1
8、女,共有多女,共有多少种不同的搭配方法。少种不同的搭配方法。分析:每一种搭配都需要分析:每一种搭配都需要2男男2女,所以先要选出女,所以先要选出2男男2女,有女,有C82.C72种;种;然后考虑然后考虑2男男2女搭配,有多少种方法?女搭配,有多少种方法?男女男女-男女男女 Aa-Bb Ab-Ba Bb-Aa Ba-Ab 显然:显然:与与;与与在在搭配上是一样的。所以搭配上是一样的。所以只有只有2种方法,种方法,所以总的搭配方法所以总的搭配方法有有2 C82.C72种。种。搭搭 配配 问问 题题先组后排先组后排1.高二要从全级高二要从全级10名独唱选手中选出名独唱选手中选出6名在歌咏会名在歌咏会
9、上表演,出场安排甲,乙两人都不唱中间两位的上表演,出场安排甲,乙两人都不唱中间两位的安排方法有多少种?安排方法有多少种?611524824848(AC A AA A种)(一)(一).有条件限制的排列问题有条件限制的排列问题 例例1:5个不同的元素个不同的元素a,b,c,d,e每次取全排列。每次取全排列。a,e必须排在首位或末位,有多少种排法?必须排在首位或末位,有多少种排法?a,e既不在首位也不在末位,有多少种排法?既不在首位也不在末位,有多少种排法?a,e排在一起多少种排法?排在一起多少种排法?a,e不相邻有多少种排法?不相邻有多少种排法?a在在e的左边(可不相邻)有多少种排法?的左边(可不
10、相邻)有多少种排法?解:解:(解题思路)分两步完成,把(解题思路)分两步完成,把a,e排在首末两排在首末两端有端有A22种,再把其余种,再把其余3个元素排在中间个元素排在中间3个位置有个位置有A33种。种。由乘法共有由乘法共有A22.A33=12(种种)排法。排法。优优先先法法 解:解:先从先从b,c,d三个选其中两个三个选其中两个排在首末两位,有排在首末两位,有A32种,然后把剩下的一个与种,然后把剩下的一个与a,e排在中间三个位置有排在中间三个位置有A33种,由乘法原理种,由乘法原理:共有共有A32.A33=36种排列种排列.间接法:间接法:A55-4A44+2A33(种)排法。(种)排法
展开阅读全文