书签 分享 收藏 举报 版权申诉 / 30
上传文档赚钱

类型八年级下册数学课件(湘教版)菱形的性质.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5084529
  • 上传时间:2023-02-09
  • 格式:PPT
  • 页数:30
  • 大小:1.54MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《八年级下册数学课件(湘教版)菱形的性质.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    年级 下册 数学 课件 湘教版 菱形 性质 下载 _八年级下册_湘教版(2024)_数学_初中
    资源描述:

    1、第2章 四边形 2.6.1 2.6.1 菱形的性质菱形的性质学习目标1.了解菱形的概念及其与平行四边形的关系.2.探索并证明菱形的性质定理.(重点)3.应用菱形的性质定理解决相关计算或证明问题.(难点)情景引入欣赏下面图片,图片中框出的图形是你熟悉的吗?平行四边形矩形 前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是直角时,就成为了矩形.有一个角是直角菱形的性质一思考 如果从边的角度,将平行四边形特殊化,内角大小保持不变仅改变边的长度让它有一组邻边相等,这个特殊的平行四边形叫什么呢?平行四边形 定义:有一组邻边相等的平行四边形叫作菱形.菱形一组邻边

    2、相等菱形是特殊的平行四边形.平行四边形不一定是菱形.归纳总结 活动 在自己剪出的菱形上画出两条折痕,折叠手中 的图形(如图),并回答以下问题:问题1 菱形是轴对称图形吗?如果是,指出它的对称轴.是,两条对角线所在直线都是它的对称轴.问题2 根据上面折叠过程,猜想菱形的四边在数量上 有什么关系?菱形的两对角线有什么关系?猜想1 菱形的四条边都相等.猜想2 菱形的两条对角线互相垂直,并且每一条对 角线平分一组对角.已知:如图,在菱形ABCD中,AB=AD,对角线AC与BD相交于点O.求证:(1)AB=BC=CD=AD;(2)ACBD;DAC=BAC,DCA=BCA,ADB=CDB,ABD=CBD.

    3、证明:(1)四边形ABCD是菱形,AB=CD,AD=BC(菱形的对边相等).又AB=AD,AB=BC=CD=AD.ABCOD证一证(2)AB=AD,ABD是等腰三角形.又四边形ABCD是菱形,OB=OD(菱形的对角线互相平分).在等腰三角形ABD中,OB=OD,AOBD,AO平分BAD,即ACBD,DAC=BAC.同理可证DCA=BCA,ADB=CDB,ABD=CBD.ABCOD 菱形是特殊的平行四边形,它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质.对称性:是轴对称图形.边:四条边都相等.对角线:互相垂直,且每条对角线平分一组对角.角:对角相等.边:对边平行且相等.对角线:相

    4、互平分.菱形的特殊性质平行四边形的性质归纳总结例1 如图,在菱形ABCD中,对角线AC、BD相交于点O,BD12cm,AC6cm,求菱形的周长解:因为四边形ABCD是菱形,所以ACBD,AO AC,BO BD.因为AC6cm,BD12cm,所以AO3cm,BO6cm.在RtABO中,由勾股定理得所以菱形的周长4AB43 12 (cm)12122222363 5 cm.ABAOBO55典例精析例2 如图,在菱形ABCD中,CEAB于点E,CFAD于点F,求证:AEAF.证明:连接AC.四边形ABCD是菱形,AC平分BAD,即BACDAC.CEAB,CFAD,AECAFC90.又ACAC,ACEA

    5、CF.AEAF.菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角归纳例3 如图,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且DAE=2BAE,求证:OA=EB.ABCDOE证明:四边形ABCD为菱形,ADBC,AD=BA,ABCADC2ADB,DAEAEB,AB=AE,ABCAEB,ABC=DAE,DAE2BAE,BAEADB.又ADBA,AODBEA,AOBE.1.如图,在菱形ABCD中,已知A60,AB 5,则ABD的周长是 ()A.10 B.12 C.15 D.20C练一练2.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点

    6、,E是AD的中点,连接OE,则线段OE的长为_.第1题图第2题图6cm思考:菱形是不是中心对称图形?如果是,那么对称中心是什么?菱形是中心对称图形,对角线的交点是它的对称中心.由于菱形是平行四边形,因此O做一做:把图中的菱形ABCD沿直线DB对折,点A的像是_,点C的像是_,点D的像是_,点B的像是_,边AD的像是_,边CD的像是_,边AB的像是_,边CB的像是_.点C点A边CD点D点B边AD边CB边AB想一想:你能得到什么结论?菱形是轴对称图形,两条对角线所在直线都是它的对称轴.菱形的面积二问题1 菱形是特殊的平行四边形,那么能否利用平行四边形面积公式计算菱形ABCD的面积?ABCD思考 前

    7、面我们已经学习了菱形的对角线互相垂直,那么能否利用对角线来计算菱形ABCD的面积呢?能.过点A作AEBC于点E,则S菱形ABCD=底高 =BCAE.E问题2 如图,四边形ABCD是菱形,对角线AC,BD交于点O,试用对角线表示出菱形ABCD的面积.ABCDO解:四边形ABCD是菱形,ACBD,S菱形ABCD=SABC+SADC=ACBO+ACDO=AC(BO+DO)=ACBD.12121212你有什么发现?菱形的面积=底高=对角线乘积的一半例4 如图,在菱形ABCD中,点O为对角线AC与BD的交点,且在AOB中,OA5,OB12.求菱形ABCD两对边的距离h.解:在RtAOB中,OA5,OB1

    8、2,所以SAOB OAOB 51230,所以S菱形ABCD4SAOB430120.因为又因为菱形两组对边的距离相等,所以S菱形ABCDABh13h,所以13h120,得h .222251213,ABAOBO121212013 菱形的面积计算有如下方法:(1)一边长与两对边的距离(即菱形的高)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长度乘积的一半归纳例5 如图,菱形花坛ABCD的边长为20m,ABC60,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积(结果分别精确到0.01m和0.1m2).ABCDO解:花坛ABCD是菱形,1

    9、30.2ACBDABOABC,1Rt10m2OABAOAB在中,2222201010 3 mBOABAO,220m220334.64 m.ACAOBDBO,21200 3346.4 m.2ABCDSAC BD菱形【变式题】如图,在菱形ABCD中,ABC与BAD的度数比为1:2,周长是8cm求:(1)两条对角线的长度;(2)菱形的面积解:(1)四边形ABCD是菱形,AB=BC,ACBD,ADBC,ABC+BAD=180.ABC与BAD的度数比为1:2,ABC=180=60,ABO=ABC=30,ABC是等边三角形.菱形ABCD的周长是8cmAB=2cm,1213OA=AB=1cm,AC=AB=2

    10、cm,BD=2OB=cm;(2)S菱形ABCD=ACBD =2 =(cm2)12223,OBABOA2 312122 32 3 菱形中的相关计算通常转化为直角三角形或等腰三角形,当菱形中有一个角是60时,菱形被分为以60为顶角的两个等边三角形.归纳练一练如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm B1.菱形具有而一般平行四边形不具有的性质是()A.对角相等 B.对边相等 C.对角线互相垂直 D.对角线相等C2.如图,在菱形ABCD中,AC=8,BD=6,则ABD的周长等于 ()A.18 B.16 C.15

    11、D.14 B3.根据下图填一填:(1)已知菱形ABCD的周长是12cm,那么它的边长 是 _.(2)在菱形ABCD中,ABC120,则BAC _.(3)菱形ABCD的两条对角线长分别为6cm和8cm,则菱形的边长是_.3cm30ABCOD5cm(4)菱形的一个内角为120,平分这个内角的对角 线长为11cm,菱形的周长为_.44cm(5)菱形的面积为64平方厘米,两条对角线的长度比为1 2 ,那么菱形最短的那条对角线长为_.8厘米ABCOD4.如图,四边形ABCD是边长为13cm的菱形,其中对 角线BD长10cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.解:(1)四边形ABCD是

    12、菱形,AED=90,(2)菱形ABCD的面积AC=2AE=212=24(cm).DBCAE5.如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E 求证:AFD=CBE 证明:四边形ABCD是菱形,CB=CD,CA平分BCDBCE=DCE又 CE=CE,BCECDE(SAS)CBE=CDE 在菱形ABCD中,ABCD,AFD=FDC.AFD=CBEADCBFE6.如图,O是菱形ABCD对角线AC与BD的交点,CD5cm,OD3cm;过点C作CEDB,过点B作BEAC,CE与BE相交于点E.(1)求OC的长;(2)求四边形OBEC的面积解:(1)四边形ABCD是菱形,ACBD.在直角OCD中,由勾股定理得OC4cm;(2)CEDB,BEAC,四边形OBEC为平行四边形.又ACBD,即COB90,平行四边形OBEC为矩形.OBOD3cm,S矩形OBECOBOC3412(cm2)菱形的性质菱形的性质有关计算边1.周长=边长的四倍2.面积=底高=两条对角线乘积的一半角对角线1.两组对边平行且相等;2.四条边相等两组对角分别相等,邻角互补1.两条对角线互相垂直平分;2.每一条对角线平分一组对角

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:八年级下册数学课件(湘教版)菱形的性质.ppt
    链接地址:https://www.163wenku.com/p-5084529.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库