线性方程组解题归纳课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《线性方程组解题归纳课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性方程组 解题 归纳 课件
- 资源描述:
-
1、BG1线性方程组解题方法技巧与题型归纳 BG2题型一 线性方程组解的基本概念v1.如果1、2是下面方程组的两个不同的解向量,则a的取值如何?4102132332131321xaxxxxaxxxBG3v解:因为1、2是方程组的两个不同的解向量,故方程组有无穷多解,r(A)=r(Ab)3,对增广矩阵进行初等行变换v易见仅当a=-2时,r(A)=r(Ab)=23,v故知a=-2。10514320053220311410213023112aaaaaaaBG4v2.设A是秩为3的54矩阵,1、2、3是非齐次线性方程组Ax=b的三个不同的解,若1+2+23=(2,0,0,0)T,31+2=(2,4,6,8
2、)T,求方程组Ax=b的通解。BG5v解:因为r(A)=3,所以齐次线性方程组Ax=0的基础解系由4-r(A)=1个向量构成,v又因为(1+2+23)-(31+2)=2(3-1)=(0,-4,-6,-8)T,是Ax=0的解,即其基础解系可以是(0,2,3,4)T,v由A(1+2+23)=A1+A2+2A3=4b知1/4(1+2+23)是Ax=b的一个解,故Ax=b的通解是TTk4,3,2,00,0,0,21BG6v3.已知1=(-9,1,2,11)T,2=(1,-5,13,0)T,3=(-7,-9,24,11)T是方程组的三个解,求此方程组的通解。34432144322114432214942
3、332dxcxxxxbxxbxdxaxxaxBG7v分析:求Ax=b的通解关键是求Ax=0的基础解系,判断r(A)的秩。v解:A是34矩阵,r(A)3,由于A中第2,3两行不成比例,故r(A)2,又因为1=1-2=(-10,6,-11,11)T,2=2-3=(8,4,-11,-11)T是Ax=0的两个线性无关的解向量,于是4-r(A)2,因此r(A)=2,所以1+k11+k22是通解。BG8v总结:v不要花时间去求方程组,太繁琐,由于1-2,1-3或3-1,3-2等都可以构成齐次线性方程组的基础解系,1,2,3都是特解,此类题答案不唯一。BG9题型2 线性方程组求解4.矩阵B 的各行向量都是方
4、程组的解向量,问这四个行向量能否构成上方程组的基础解系?若不能,这4个行向量是多了还是少了?若多了如何去掉,少了如何补充?02321011000102100121033450622032305432154325432154321xxxxxxxxxxxxxxxxxxxBG10v解:将方程组的系数矩阵A化为行最简形阵vr(A)=2,n=5,因而一个基础解系含有3个解向量1=(1,-2,1,0,0)T,2=(1,-2,0,1,0)T,B 3=(5,-6,0,0,1)T,B矩阵的r3=r1-r2,r4=3r1-2r2,B中线性无关的行向量只有1,2行,故B中4个行向量不能构成基础解系,需增补3。100
5、00000000622105110113345622103112311111AA02321011000102100121BG11v1.参数取哪些值时使r(A)r(Ab),方程组无解;v2.参数取哪些值时使r(A)=r(Ab),方程组有解,继续讨论v参数取哪些值时使r(A)=r(Ab)n,方程组有无穷多解;v(2)参数取哪些值时使r(A)=r(Ab)=n,方程组有唯一解。题型3 含参数的线性方程组解的讨论BG12v一、当方程个数与未知量个数不等的线性方程组,只能用初等行变换求解;v二、当方程个数与未知量个数相等的线性方程组,用下面两种方法求解:v1.初等行变换法v2.系数行列式法,系数行列式不等
6、于0时有唯一解,可用克莱姆法则求之;系数行列式为0时,用初等行变换进行讨论。BG13v5.设线性方程组v(1)证明:若a1,a2,a3,a4两两不相等,则线性方程组无解;v(2)设a1=a3=k,a2=a4=-k(k0),且已知1=(-1,1,1)T,2=(1,1,-1)T是该方程组的两个解,写出该方程组的通解。34324241333232313232222131321211axaxaxaxaxaxaxaxaxaxaxaxBG14v解(1)(Ab)对应的行列式是范德蒙行列式,故r(Ab)=4,r(A)=3,所以方程组无解。v(2)当a1=a3=k,a2=a4=-k时,原方程组化为v系数矩阵与增
7、广矩阵的秩均为2,2-1=(-2,0,2)T,是对应导出组的非零解,即为其基础解系,故非齐次组的通解为vX=c(2-1)+1。(c为任意常数。)3322133221kxkkxxkxkkxxBG15v6.设n维向量组1,2,3(n3)线性无关,讨论:当向量组a2-1,b3-2,a1-b3线性相关时,方程组1243287323243242143214321bxaxxxxxxaxxxxxxx的解,且当有无穷多解时,用其导出组的基础解系表示其通解。BG16v解:(a2-1,b3-2,a1-b3)=因为1,2,3线性无关,所以向量组 a2-1,b3-2,a1-b3线性相关的充要条件是即b(a2-1)=0
8、所以b=0或a=1bbaa00101321,000101bbaaBG17v方程组的增广矩阵(Ab)=baabaa10001210011110321111211043021873232111 (1)当a=1,b 0时,方程组无解;(2)当a=-1,b 0时,方程组唯一解;(3)当b=0,a 1时,方程组唯一解;(4)当a=1,b=0时,方程组有无穷多解。BG18v此时:0000021100021011023020100000120001111032111Ab21021230112c该方程组的通解为取x3为自由未知量BG19题型4 线性方程组的公共解、同解问题v情况1.已知两具体齐次线性方程组,求
展开阅读全文