积分时间TI对过渡过程影响课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《积分时间TI对过渡过程影响课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 积分 时间 TI 过渡 过程 影响 课件
- 资源描述:
-
1、2 2 控制器的基本控制规律控制器的基本控制规律控制器的输入:输出:控制器的控制规律就是u(t)与e(t)之间的关系,是在人工经验的基础上总结并发展的。控制器的基本控制规律有:比例、积分和微分,此外还有如继电器特性的位式控制规律等。)t(u)t(r)t(y)t(e图71 反应器的温度控制人工操作过程分析人工操作过程分析以蒸汽加热反应釜为例:设反应温度:85度,轻微放热反应 操纵变量:蒸汽流量 被控变量:反应温度 干扰:蒸汽压力、进料流量等人工操作(人工操作(1 1):开关控制):开关控制u 若温度低于85度,蒸汽阀门全开u 若温度高于85度,蒸汽阀门全关现象现象:温度持续波动,过程处于振荡中。
2、结果结果:双位控制规律控制品质差,满足不了生产要求。u 温度为85度,蒸汽阀门开度是3圈u 若温度高于85度,每高5度就关一圈阀门u 若温度低于85度,每低5度就开一圈阀门即开启圈数相应控制规律可写为:u(0):偏差为0时控制器输出Kc:控制器比例放大倍数人工操作(人工操作(2 2):比例控制):比例控制)y(85513)t(eK)(u)t(uc0现象:温度控制得比较平稳结果:控制品质有一定改善,但负荷变化时,会有余差。如工况有变动,当阀门开3圈时,温度不再保持在85度。人工操作(人工操作(3 3):增加积分作用):增加积分作用首先按照比例控制操作,然后不断观察u 若温度低于85度,慢慢地持续
3、开大阀门u 若温度高于85度,慢慢地持续开小阀门直到温度回到85度即控制器输出变化的速度与偏差成正比:tIIdt)t(eK)(u)t(u)t(eKdt)t(du00KI:积分控制作用放大倍数现象:只要有偏差,控制器输出就不断变化。结果:输出稳定在设定的85度上,即消除了余差。人工操作(人工操作(4 4):增加微分作用):增加微分作用 由于温度过程容量滞后大,当出现偏差时,其数值已经较大,因此,补充经验:根据偏差变化的速度来开启阀门,从而抑制偏差的幅度,使控制作用更加及时。dt)t(deT)t(uD时间连续PID控制规律时间离散PID控制规律理想PID控制器的运算规律数学表达式:其传递函数形式:
4、一、连续一、连续PIDPID控制规律控制规律dt)t(deTdt)t(eT)t(eK)t(uDIC1)sTsT(K)s(E)s(U)s(GDICC11(7-1)(7-2)控制器运算规律通常用增量形式表示,若用实际值表示,则为:式中u(0)为控制器初始输出,即t0瞬间偏差为0时的输出。)(udt)t(deTdt)t(eT)t(eK)t(uDIC01)(u)t(u)t(u0(7-3)(7-4)1 1、比例控制(、比例控制(P P)分析分析(1)比例控制规律控制器输出变化与输入偏差成正比。在时间上没有延迟。在相同的偏差下,Kc越大,输出也越大,因此Kc是衡量比例作用强弱的参数。工业上用比例度来表示比
5、例作用的强弱。)t(eK)t(uC(7-5)传递函数形式:CCK)s(E)s(U)s(G图72 阶跃偏差作用下比例控制器的开环输出特性(7-6)(2)(2)、比例度、比例度%KC1001(7-7)(a)在扰动(或负荷)变化及设定值变化时有余差存在。因为在这几种情况下,控制器必有输出 以改变阀门开度,力图使过程的物料和能量能够达到新的平衡。但 又正比于偏差 e,因此此时控制器的输入信号必然不是0。当比例度较小时,对应同样的 变化的e较小;因此余差小。(3)(3)、比例度对系统过渡过程影响、比例度对系统过渡过程影响uuu(b)比例度越大,过渡过程曲线越平稳;随着比例度减小,系统振荡程度加剧。当比例
6、度减小到某数值 时,系统出现等幅振荡,再减小系统将发散。因此控制系统参数设置不当,也达不到控制系统设计的效果应该根据系统各个环节的特性,特别是过程特性选择合适的控制器参数 ,才能获得理想的控制指标。k(c)最大偏差在两类外作用下不一样在扰动作用下,越小,最大偏差越小在设定作用且系统处于衰减振荡时,越小,最大偏差也越大。因为最大偏差取决于余差与超调量。在扰动作用下,最大偏差取决于余差,小,余差小。在设定作用下,则取决于超调量,小,则超调量大,所以最大偏差大。图73 不同比例度下过渡过程(a)扰动作用(b)设定作用(d)如果 小,则振荡频率提高,因此把被控变量拉回到设定值所需的时间就短。一般而言:
7、当广义对象的放大系数较小,时间常数较大、时滞较小时,控制器的比例度可选较小,以提高系统的灵敏度。当广义对象的放大系数较大,时间常数较小而时滞较大时,需要适当增大控制器的比例度,以增加系统的稳定性。工业生产中定值控制系统通常要求控制系统具有振荡不太剧烈,余差不太大的过渡过程,衰减比定在4:110:1,而随动系统一般衰减比在10:1以上。比例控制小结:比例控制小结:比例控制是最基本、最主要也是应用最普遍的控制规律,它能够迅速地克服扰动的影响,使系统很快地稳定下来。比例控制通常适用于扰动幅度小,负荷变化不大,过程时滞较小()或者控制要求不高的情况下。T/负荷变化大,余差大,负荷变化小,余差小。(分析
8、见前面比例度对过渡过程影响(c)过程 的越大,振荡越厉害,如果此时把比例度增大以提高系统稳定性,则余差就会增大,如果 较小,则比例度可以小些,余差也就减小。控制要求不高的场合:液位控制中,往往只要求液位稳定在一定的范围内,没有严格的要求,只有当比例控制的控制指标满足不了工艺要求时,才需引入其他控制作用。T/T/2 2、比例积分控制(、比例积分控制(PIPI)分析分析(1)积分控制规律KI表示积分速度。控制器输出信号的大小,不仅与偏差大小有关,还取决于偏差存在的时间长短。只要有偏差存在,控制器的输出就不断变化。偏差存在时间越长,输出信号的变化量越大,直到达到输出极限。tIdt)t(eK)t(u0
9、(7-8)只有余差为0,控制器的输出才稳定。力图消除余差是积分作用的重要特性。力图消除余差是积分作用的重要特性。在幅度为A的阶跃作用下,积分控制器的开环输出如图74所示。输出直线的斜率为KIA。图74 阶跃偏差作用下积分输出(2)积分控制规律分析 积分控制作用总是滞后于偏差的存在,因此它不能有效地克服扰动的影响,难以使得控制系统稳定下来,因此积分控制作用很少单独使用。如图75分析,引入积分作用会使系统容易振荡。比例作用的输出与偏差同步,偏差大,输出大,偏差小,输出小,因此控制及时。而积分作用则不是。图75 积分作用的落后性在第一个前半周期内,测量值一直低于设定值,出现负偏差,所以按同一方向累积
10、。从t1到t2时间段,偏差还是为负,但数值在减小,因此,积分输出仍然在增加,但增加的量在减小。显然,在这个时间段,积分输出增加是不合理的,因为偏差已经在减小。这就暴露了积分控制的弱点:控制作用的落后性。这往往会导致超调,并引起被控变量波动厉害。工业上常将比例作用与积分作用组合成比例积分控制规律。(2)比例积分控制规律比例积分控制器的传递函数是:dt)t(eT)t(eK)t(utIC01)sT(K)s(E)s(U)s(GICc11(7-9)(7-10)在阶跃偏差作用下,比例积分控制器的开环输出如图76所示。在偏差幅度为A的阶跃作用下,比例输出立即跳变到KCA,然后积分输出随时间线性增加。在KC和
11、A确定时,直线的斜率取决于积分时间TI的大小。TI越大,直线越平坦,积分作用越弱。TI越小,直线越陡,表示积分作用越强TI趋向无穷大时,比例积分控制器蜕变为比例控制器。图76 阶跃偏差作用下比例积分控制器的输出 TI是描述积分作用强弱的物料量,其定义为:在阶跃偏差作用下,控制器的输出达到比例输出的两倍所经历的时间,就是积分时间TI。因为在任意时间,控制器的输出为:。当t=TI时,输出即为2KCA。At)T/K(AKICC 比例积分控制器在投运前,需对 和积分时间TI进行校验。积分时间测定时,一般先将比例度置于100%,然后对控制器输入一个幅度为A的阶跃偏差,测出控制器的跳变KCA,同时按住秒表
12、,待到积分输出与比例输出相同时,所经历的时间就是积分时间TI。如图77所示。图77 积分时间测定 比例积分控制器,工作点不断变化的比例积分控制器,工作点不断变化的比例控制器:比例控制器:比例控制器可以看成是粗调的比例作用与细调的积分作用的组合。如果比例控制器的输出增量与偏差信号一一对应,则比例积分控制器可以理解为比例度不断减小,即比例增益不断放大的比例控制器,如图76所示。(3 3)积分时间)积分时间T TI I对过渡过程影响对过渡过程影响 在一个纯比例的闭环控制系统中引入积分作用时,若 不变,则可从图78所示的曲线看出,随着TI的减小,积分作用增强,消除余差快,但控制系统的振荡加剧,系统的稳
13、定性下降;TI过小,可能导致系统不稳定。TI小,扰动作用下的最大偏差小,振荡频率增加。(3 3)积分时间)积分时间T TI I对过渡过程影响对过渡过程影响 在一个纯比例的闭环控制系统中引入积分作用时,若 不变,则可从图78所示的曲线看出,随着TI的减小,积分作用增强,消除余差快,但控制系统的振荡加剧,系统的稳定性下降;TI过小,可能导致系统不稳定。TI小,扰动作用下的最大偏差小,振荡频率增加。图78 比例度不变时积分时间对过渡过程影响(a)扰动作用(b)设定作用 在比例控制系统中引入积分作用可以消除余差,但是系统的稳定性降低。若要保持系统原有的稳定性,就要加大控制器的比例度,但这又会使系统的其
14、他控制指标下降。因此,如果余差不是系统的主要控制指标,就没有必要引入积分作用。由于比例积分控制器具有比例和积分控制的优点,有比例度和积分时间两个参数可调,因此适用范围较广,多数控制系统都可采用。只有在过程的容量滞后大,时间常数大,或者负荷变化剧烈时,由于积分作用较为迟缓,系统的控制指标不能满足工艺要求,才考虑在系统中增加积分作用。(4 4)积分饱和及防止)积分饱和及防止 积分饱和是指一种积分过量现象。在通常的控制回路中,由于积分作用能一直消除偏差,因此能达到没有余差的稳态值,但在有些场合却并非如此。如图78(a)所示的保证压力不超限的安全防空系统,设定值为压力的容许限值,在正常操作情况下,放空
15、阀是全关的,然而实际压力总是低于此设定值,偏差长期存在。如果考虑在气源中断时保证安全,采用气关阀,则控制器应该是反作用的。假设采用气动控制器,则由于在正常工况下偏差一直存在,控制器的输出降达到上限。此时,控制器的输出不仅是上升到额定的最大值100KPa为止,而是会继续上升到气源压力140160KPa,即图79(b)中的起始阶段。(a)压力放空系统图79 压力安全放空系统中的积分饱和(a)积分饱和现象 如果考虑在气源中断时保证安全,采用气关阀,则控制器应该是反作用的。假设采用气动控制器,则由于在正常工况下偏差一直存在,控制器的输出降达到上限。此时,控制器的输出不仅是上升到额定的最大值100KPa
展开阅读全文