《工程数学基础第2版》课件第1章.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《工程数学基础第2版》课件第1章.ppt》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程数学基础第2版 工程 数学 基础 课件
- 资源描述:
-
1、第一章 函数、极限与连续性 1.1 函数函数 1.2 极限极限 1.3 极限运算法则极限运算法则 1.4 两个重要极限两个重要极限 1.5 无穷小与无穷大无穷小与无穷大 1.6 函数的连续性函数的连续性1.1 函数函数1.1.1 函数的概念函数的概念1函数的定义函数的定义定义定义1 设D是一非空实数集,如果存在一个对应法则f,使得对D内的每一个值x,按法则f,都有y与之对应,则这个对应法则f称为定义在集合D上的一个函数,记作Dx)(xfy 其中x称为自变量自变量,y称为因变量因变量或函数值函数值,D称为定义域定义域,集合 称为值域值域.),(|Dxxfyy2几个特殊的函数几个特殊的函数(1)分
2、段函数分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数。注意注意:分段函数的定义域是各段定义区间的并集。例如:例如:1232xxy0230 xx(2)隐函数隐函数 变量之间的关系是由一个方程来确定的函数。例如:例如:由方程 确定的函数.122 yx (3)参数方程所确定的函数参数方程所确定的函数 例如:例如:由)()(tytx 确定的y与x之间的函数关系.(t为参数)3函数的定义域函数的定义域 常见解析式的定义域求法有:(1)分母不能为零;(2)偶次根号下非负;(3)对数式中的真数恒为正;(4)分段函数的定义域应取各分段区间定义域的并集.例例1求下列函数的定义域 1212xx
3、y321lgxxy(1)(2)sin 12cos 23xxyxx(3)解题过程解题过程解题过程解题过程 解解(1)要使函数有意义,必须 ,且 ,解不等式得 .所以函数的定义域为 且 20 x 210 x|1x|1xx 2x(2)要使函数有意义,必须 ,即 .所以函数的定义域为 03021xx3x3|xx (3)函数的定义域为 1,2)2,3)1,3)1.1.2 初等函数与点的邻域初等函数与点的邻域1基本初等函数基本初等函数常数函数:(C为常数)幂函数:指数函数:对数函数:三角函数:反三角函数:以上六类函数统称为基本初等函数基本初等函数.yCyxxyalogayxsinyxcosyxtanyxc
4、otyxsecyxcscyxarcsinyxarccosyxarctanyxarccot yx为了方便,我们通常把多项式 也看作基本初等函数。1110nnnnya xaxa xa2复合函数复合函数引例:引例:考查具有同样高度h的圆柱体的体积V,显然其体积的不同取决于它的底面积S的大小,即由公式V=Sh(h为常数)确定。而底面积S的大小又由其半径r确定,即公式 。V是S的函数,S是r的函数,V与r之间通过S建立了函数关系式 。它是由函数 与复合而成的,简单地说V是r的复合函数。2rS2VShrhVSh2rS复合函数定义复合函数定义复合函数定义复合函数定义定义:定义:设y是u的函数 ,而u又是x的
5、函数 ,且 的值域与 的定义域交非空,那么y通过中间变量u的联系成为x的函数,我们把这个函数称为是由函数 与 复合而成的复合函数复合函数.记做:其中u称为中间变量中间变量.)(ufy)(xu)(x)(uf()yf u)(xu)(xfy注意:注意:并不是任意两个函数都能复合成一个复合函数的.如 ,就不能复合成一个函数.同时,学习复合函数有两方面要求:一方面,会把有限个作为中间变量的函数复合成一个函数;另一方面,会把一个复合函数分解为有限个较简单的函数.arcsinyu22ux例例2 将 ,复合成一个函数.例例3 指出下列函数的复合过程.uysin23xu 解题过程解题过程(1)2ln(310)y
6、xx(2)21arctan2yx解题过程解题过程解题过程解题过程例2解:23sinsinxuy例3解:(1)是由 和 复合而成的.(2)是由 ,和 复合而成的.lnyu2310uxxarctanyu1uv22vx如何定义平面上一点 的邻域?3初等函数初等函数定义定义 由基本初等函数经过有限次的四则运算或有限次的复合运算所构成并可用一个式子表示的函数,称为初等函数.否则称为非初等函数.4点的邻域点的邻域定义定义 设 ,集合 ,即数轴上到点 的距离小于 的点的全体,称为点 的 邻域,记为 .点 ,分别称为该邻域的中心和半径。集合 称为点 的 空心邻域记 .0,xR0000|(,)xR xxxx0
7、x0 x0(,)U x0 x0|0 xRxx0 x00(,)U x思考:思考:),(00yx返回返回1.2 极限极限1数列的定义数列的定义定义定义 按一定规律排列得到的一串数就称为数列 记为 其中第n 项 称为数列的一般项一般项或通通项项.1.2.1 数列极限数列极限 123,nx x xx nxnx观察以下三个数列:(可以写出一部分数值)2n1n )1(n讨论结论讨论结论(1)(2)(3)讨论结论讨论结论观察上面三个数列:(1)当n无限增大时,也无限增大;(2)当n无限增大时,无限地趋近于0;(3)当n无限增大时,总在1,-1两个数值之间跳跃。2nn1n)1(2数列极限的定义数列极限的定义定
8、义定义 对于数列 如果当项数n 无限增大时 数列的一般项无限地趋近于某一确定的常数A 那么称常数A 是数列 的极限记为 ,或者记为 (读作:当n趋向于无穷大时,的极限等于A).nxnx nxlimnnxA()nxA nnx若数列存在极限,称数列是收敛收敛的;若数列没有极限,则称数列是发散发散的 1.2.2 函数极限函数极限1当当 ,函数,函数 的极限的极限定义定义 如果当 无限增大(即 )时,函数 无限地趋近于某一确定的常数A,那么称常数A是函数 当 时的极限,记为 或x ()f xxx ()f x()f xx lim()xf xA()()f xA x解题过程解题过程解题过程解题过程结论结论结
9、论结论由例2我们可以得出下面的结论:例题与注意点例题与注意点例题例题注意点注意点分别作函数图像讨论下列极限分别作函数图像讨论下列极限例例6的结论的结论结论结论思考题思考题返回返回1.3 极限运算法则极限运算法则说明:说明:法则(1)(2)可推广到有限个函数的情况。推论推论例题例题例题例题解题过程解题过程解题过程解题过程解题过程解题过程解题过程解题过程解题过程解题过程解题过程解题过程解题过程解题过程说明:说明:以上两个均为“”型极限,可通过因式分解、根式有理化消去 分母上的零因子 00解题过程解题过程说明说明:这是“”型极限,通过通分转化 思考题思考题121lim22xxxx(1)2331lim
展开阅读全文