数字通信第10章差错控制编码课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数字通信第10章差错控制编码课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字通信 10 差错 控制 编码 课件
- 资源描述:
-
1、成都理工大学“数字通信原理”第第 10 10 章章 差错控制编码差错控制编码 10.1 10.1 概述概述 10.2 10.2 常用的几种简单分组码常用的几种简单分组码 10.3 10.3 线性分组码线性分组码 10.4 10.4 循环码循环码 10.5 10.5 卷积码卷积码 *10.6 10.6 网格编码调制网格编码调制 成都理工大学“数字通信原理”10.1 10.1 概概 述述 10.1.1 10.1.1 信道编码信道编码 在数字通信中,根据不同的目的,编码可分为信源编码和信道编码。信源编码是为了提高数字信号的有效性以及为了使模拟信号数字化而采取的编码。信道编码是为了降低误码率,提高数字
2、通信的可靠性而采取的编码。数字信号在传输过程中,加性噪声、码间串扰等都会产生误码。为了提高系统的抗干扰性能,可以加大发射功率,降低接收设备本身的噪声,以及合理选择调制、解调方法等。此外,还可以采用信道编码技术。成都理工大学“数字通信原理”10.1.2 10.1.2 差错控制方式差错控制方式 图 10-1 差错控制方式 发端纠错码收端前向纠错FEC发端检错码收端检错重发ARQ判决信号发端检错和纠错码收端混合纠错HEC判决信号成都理工大学“数字通信原理”1.1.检错重发方式检错重发方式 检错重发又称自动请求重传方式,记作ARQ(Automatic Repeat Request)。由发端送出能够发现
3、错误的码,由收端判决传输中无错误产生,如果发现错误,则通过反向信道把这一判决结果反馈给发端,然后,发端把收端认为错误的信息再次重发,从而达到正确传输的目的。其特点是需要反馈信道,译码设备简单,对突发错误和信道干扰较严重时有效,但实时性差,主要在计算机数据通信中得到应用。成都理工大学“数字通信原理”2.2.前向纠错方式前向纠错方式 前向纠错方式记作FEC(Forword ErrorCorrection)。发端发送能够纠正错误的码,收端收到信码后自动地纠正传输中的错误。其特点是单向传输,实时性好,但译码设备较复杂。成都理工大学“数字通信原理”3.3.混合纠错方式混合纠错方式 混合纠错方式记作HEC
4、(Hybrid ErrorCorrection)是FEC和ARQ方式的结合。发端发送具有自动纠错同时又具有检错能力的码。收端收到码后,检查差错情况,如果错误在码的纠错能力范围以内,则自动纠错,如果超过了码的纠错能力,但能检测出来,则经过反馈信道请求发端重发。这种方式具有自动纠错和检错重发的优点,可达到较低的误码率,因此,近年来得到广泛应用。成都理工大学“数字通信原理”另外,按照噪声或干扰的变化规律,可把信道分为三类:随机信道、突发信道和混合信道。恒参高斯白噪声信道是典型的随机信道,其中差错的出现是随机的,而且错误之间是统计独立的。具有脉冲干扰的信道是典型的突发信道,错误是成串成群出现的,即在短
5、时间内出现大量错误。短波信道和对流层散射信道是混合信道的典型例子,随机错误和成串错误都占有相当比例。对于不同类型的信道,应采用不同的差错控制方式。成都理工大学“数字通信原理”10.1.3 10.1.3 纠错码的分类纠错码的分类 (1)根据纠错码各码组信息元和监督元的函数关系,可分为线性码和非线性码。如果函数关系是线性的,即满足一组线性方程式,则称为线性码,否则为非线性码。(2)根据上述关系涉及的范围,可分为分组码和卷积码。分组码的各码元仅与本组的信息元有关;卷积码中的码元不仅与本组的信息元有关,而且还与前面若干组的信息元有关。(3)根据码的用途,可分为检错码和纠错码。检错码以检错为目的,不一定
6、能纠错;而纠错码以纠错为目的,一定能检错。成都理工大学“数字通信原理”10.1.4 10.1.4 纠错编码的基本原理纠错编码的基本原理 1.1.分组码分组码 分组码一般可用(n,k)表示。其中,k是每组二进制信息码元的数目,n是编码码组的码元总位数,又称为码组长度,简称码长。n-k=r为每个码组中的监督码元数目。简单地说,分组码是对每段k位长的信息组以一定的规则增加r个监督元,组成长为n的码字。在二进制情况下,共有2k个不同的信息组,相应地可得到2k个不同的码字,称为许用码组。其余 2n-2k个码字未被选用,称为禁用码组。成都理工大学“数字通信原理”在分组码中,非零码元的数目称为码字的汉明重量
7、,简称码重。例如,码字 10110,码重w=3。两个等长码组之间相应位取值不同的数目称为这两个码组的汉明(Hamming)距离,简称码距。例如 11000 与 10011之间的距离d=3。码组集中任意两个码字之间距离的最小值称为码的最小距离,用d表示。最小码距是码的一个重要参数,它是衡量码检错、纠错能力的依据。成都理工大学“数字通信原理”2.2.检错和纠错能力检错和纠错能力 若分组码码字中的监督元在信息元之后,而且是信息元的简单重复,则称该分组码为重复码。它是一种简单实用的检错码,并有一定的纠错能力。例如(2,1)重复码,两个许用码组是 00 与 11,d0=2,收端译码,出现 01、10 禁
8、用码组时,可以发现传输中的一位错误。如果是(3,1)重复码,两个许用码组是 000 与111,d0=3;当收端出现两个或三个 1 时,判为 1,否则判为 0。此时,可以纠正单个错误,或者该码可以检出两个错误。成都理工大学“数字通信原理”码的最小距离d0直接关系着码的检错和纠错能力;任一(n,k)分组码,若要在码字内:(1)检测e个随机错误,则要求码的最小距离d0e+1;(2)纠正t个随机错误,则要求码的最小距离d02t+1;(3)纠正t个同时检测e(t)个随机错误,则要求码的最小距离d0t+e+1。成都理工大学“数字通信原理”3.3.编码效率编码效率 用差错控制编码提高通信系统的可靠性,是以降
9、低有效性为代价换来的。我们定义编码效率R来衡量有效性:R=k/n其中,k是信息元的个数,n为码长。对纠错码的基本要求是:检错和纠错能力尽量强;编码效率尽量高;编码规律尽量简单。际中要根据具体指标要求,保证有一定纠、检错能力和编码效率,并且易于实现。成都理工大学“数字通信原理”10.2 常用的几种简单分组码常用的几种简单分组码10.2.1 奇偶监督码奇偶监督码 奇偶监督码是在原信息码后面附加一个监督元,使得码组中“1”的个数是奇数或偶数。或者说,它是含一个监督元,码重为奇数或偶数的(n,n-1)系统分组码。奇偶监督码又分为奇监督码和偶监督码。成都理工大学“数字通信原理”设码字A=an-1,an-
10、2,a1,a0,对偶监督码有 00121aaaann 奇监督码情况相似,只是码组中“1”的数目为奇数,即满足条件 1021aaann而检错能力与偶监督码相同。奇偶监督码的编码效率R为 nnR/)1(10-1)(10-2)成都理工大学“数字通信原理”10.2.2 10.2.2 行列监督码行列监督码 奇偶监督码不能发现偶数个错误。为了改善这种情况,引入行列监督码。这种码不仅对水平(行)方向的码元,而且对垂直(列)方向的码元实施奇偶监督。这种码既可以逐行传输,也可以逐列传输。一般地,LM个信息元附加L+M+1个监督元,组成(LM+L+M+1,LM)行列监督码的一个码字(L+1行,M+1列)。图 10
11、-2 是(66,50)行列监督码的一个码字。这种码具有较强的检测能力,适于检测突发错误,还可用于纠错。成都理工大学“数字通信原理”图 10-2(66,50)行列监督码 110010100000100001101001111000011100111000001010101010111000111100成都理工大学“数字通信原理”10.2.3 10.2.3 恒比码恒比码 码字中 1 的数目与 0 的数目保持恒定比例的码称为恒比码。由于恒比码中,每个码组均含有相同数目的 1 和 0,因此恒比码又称等重码,定 1 码。这种码在检测时,只要计算接收码元中 1 的数目是否正确,就知道有无错误。目前我国电传
12、通信中普遍采用 32 码,又称“5 中取 3”的恒比码,即每个码组的长度为 5,其中 3 个“1”。这时可能编成的不同码组数目等于从 5 中取 3 的组合数 10,这 10 个许用码组恰好可表示 10 个阿拉伯数字,如表 7-1 所示。而每个汉字又是以四位十进制数来代表的。实践证明,采用这种码后,我国汉字电报的差错率大为降低。成都理工大学“数字通信原理”表表 10-1 32 10-1 32 恒比码恒比码 成都理工大学“数字通信原理”10.3 10.3 线线 性性 分分 组组 码码 在(n,k)分组码中,若每一个监督元都是码组中某些信息元按模二和而得到的,即监督元是按线性关系相加而得到的,则称线
13、性分组码。或者说,可用线性方程组表述码规律性的分组码称为线性分组码。现以(7,4)分组码为例来说明线性分组码的特点。设其码字为A A=a6 a5 a4 a3 a2 a1 a0,其中前 4 位是信息元,后 3 位是监督元,可用下列线性方程组来描述该分组码,产生监督元。346035614562aaaaaaaaaaaa(10-3)成都理工大学“数字通信原理”表表 10-2(7,4)10-2(7,4)码的码字表码的码字表 成都理工大学“数字通信原理”10.3.2 10.3.2 监督矩阵监督矩阵H H和生成矩阵和生成矩阵G G 式(10-3)所述(7,4)码的 3 个监督方程式可以改写为 0100110
14、10010101100010111012345601234560123456aaaaaaaaaaaaaaaaaaaaa(10-4)这组线性方程可用矩阵形式表示为 000100110101010110010111T0123456aaaaaaa(10-5)成都理工大学“数字通信原理”并简记为 00TTTHAHA或(10-6)其中,A AT是A A的转置,0T是0=0 0 0的转置,H HT是H H的转置。100110101010110010111H(10-7)H称为监督矩阵,一旦H给定,信息位和监督位之间的关系也就确定了。H为rn阶矩阵,H矩阵每行之间是彼此线性无关的。式(10-7)所示的H矩阵可
15、分成两部分 成都理工大学“数字通信原理”其中,P为rk阶矩阵,Ir为rr阶单位矩阵。可以写成H=P Ir形式的矩阵称为典型监督矩阵。HAHAT=0T,说明H H矩阵与码字的转置乘积必为零,可以用来作为判断接收码字A A是否出错的依据。100110101010110010111rIPH(10-8)成都理工大学“数字通信原理”若把监督方程补充为下列方程(10-9)成都理工大学“数字通信原理”可改写为矩阵形式(10-10)(10-11)即 变换为 成都理工大学“数字通信原理”1101000101010001100101110001GQIGk其中 称为生成矩阵,由G和信息组就可以产生全部码字。G为kn
16、阶矩阵,各行也是线性无关的。生成矩阵也可以分为两部分,即(10-12)(10-13)成都理工大学“数字通信原理”T110101011111PQ其中(10-14)Q为kr阶矩阵,I Ik为k阶单位阵。可以写成式(10-13)形式的G G矩阵,称为典型生成矩阵。非典型形式的矩阵经过运算也一定可以化为典型矩阵形式。成都理工大学“数字通信原理”10.3.3 10.3.3 伴随式伴随式(校正子校正子)S S 设发送码组A=an-1,an-2,a1,a0,在传输过程中可能发生误码。接收码组B B=bn-1,bn-2,b1,b0,则收发码组之差定义为错误图样E E,也称为误差矢量,即 ABE其中E E=en
17、-1,en-2,e1,e0,且 10ie当bi=ai 当biai(10-15)(10-16)成都理工大学“数字通信原理”式(7-15)也可写作 EAB令S S=BHBHT,称为伴随式或校正子。TTTEHHEABHS)(10-17)(10-18)由此可见,伴随式S S与错误图样E E之间有确定的线性变换关系。接收端译码器的任务就是从伴随式确定错误图样,然后从接收到的码字中减去错误图样。成都理工大学“数字通信原理”表表 10-3(7,4)10-3(7,4)码码S S与与E E的对应关系的对应关系 成都理工大学“数字通信原理”10.4 10.4 循循 环环 码码 循环码是一类重要的线性分组码,它除了
18、具有线性码的一般性质外,还具有循环性,即循环码组中任一码字循环移位所得的码字仍为该码组中的一个码字。在代数理论中,为了便于计算,常用码多项式表示码字。(n,k)循环码的码字,其码多项式(以降幂顺序排列)为 012211)(axaxaxaxAnnnn(10-19)成都理工大学“数字通信原理”表表 10-4(7,3)循环码循环码 成都理工大学“数字通信原理”10.4.1 10.4.1 生成多项式及生成矩阵生成多项式及生成矩阵 如果一种码的所有码多项式都是多项式g(x)的倍式,则称g(x)为该码的生成多项式。在(n,k)循环码中任意码多项式A(x)都是最低次码多项式的倍式。如表 7-4 的(7,3)
展开阅读全文