第五章拉格朗日松弛算法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第五章拉格朗日松弛算法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第五 章拉格朗日 松弛 算法 课件
- 资源描述:
-
1、拉格朗日松弛算法基于规划论的松弛方法基于规划论的松弛方法拉格朗日松弛理论拉格朗日松弛理论拉格朗日松弛的进一步讨论拉格朗日松弛的进一步讨论拉格朗日松弛算法拉格朗日松弛算法主要内容:目标值最优值基于数学规划:分支定界法、割平面法、线性规划松弛再对目标函数可行化等的目标值。现代优化算法:禁忌搜索法、模拟退火法、遗传算法、蚁群算法等的目标值。其它算法:分解法、组合算法等的目标值。下界算法:线性规划松弛、拉格朗日松弛等的目标值。例子1:线性规划松弛:在5.1.1中,将整数约束松弛为实数,称其为5.1.1的线性规划松弛:min5.1.1,.TLPnZc xAxbstxZmin5.1.2,.TLPnZc x
2、AxbstxR1.定理5.1.1:2.此类算法适合于整数规划问题中,决策变量为较大整数的情形.3.此类算法分两阶段:第一阶段为求松弛后线性规划问题的最优解;第二阶段为将解整数化,并考虑可行性.LPIPZZ注:例2:对偶规划松弛方法:5.1.2的对偶形式为:max5.1.3,.TDPTnZy bA ycstyR其中Y为决策变量.注:由对偶理论知,5.1.2和5.1.3有相同的最优值,至于采用其中的哪个模型求解5.1.1的下界,需比较哪个计算简单.例3.代理松弛法:当(5.1.1)中的约束太多时,代理松弛一个约束代替(5.1.1)中的K个约束极端情况可以用一个代替全部111()kknKKi jji
3、jkkaxb 1,1kkni jjijaxbkK111()nmmi jjijkkaxb 注:代理松弛法保证目标函数,整数规划约束不变,显然,由代理松弛法求得的解不一定可行例4.拉格朗日松弛方法基本原理:将目标函数中造成问题难的约束吸 收到目标函数中,并保持目标函数的线性,使问题容易求解.Q:为什么对此类方法感兴趣?A:(1).在一些组合优化中,若在原问题中减少一些约束,则使得问题求解难度大大降低.(我们把这类约束称为难约束).(2).实际的计算表明此种方法所得到的结果相当不错.5.1 基于规划论的松弛方法松弛的定义(5.1.1):问题整数规划模型:min5.1.1,.TIPnZc xAxbst
4、xZ:min()RRRx SRPZzx满足下列性质时,称为5.1.1的一个松弛(relaxation).(1)可行解区域兼容:(2)目标函数兼容:(),TRc xzxxS RSS其中,为5.1.1的可行域.S例5.1.1 set covering problem问题描述:设 ,所有 ,且每一列对应一个费用 ,表示第j列覆盖第i行,要求在最小的费用下选择一些列,使其覆盖所有的行.()ijm nAa0,1ija(1)jcjn 1ija 11min().1,10,1,1nscjjjni jjjjzc xSCsta ximxjn松弛问题:111min(1)().0,1,10nmnLRSCjjiijjj
5、ijjzc xa xLRSCst xjn松弛模型:11min().0,1,10nmLRSCjjijijzd xLRSCst xjn1mjjiijidca以上问题很容易求得最优解1,0*0,jdxother5.2 拉格朗日松弛理论min,():.,.TIPnZc xAxbIPstBxdxZ难约束(简单约束)|,nSxZAxb Bxd()min():,.TTLRnZc xbAxLRBxdstxZ(简单约束)原整数规划问题拉格朗日松弛|nLRSxZBxd定理5.2.1 LR同下整数规划问题(5.2.1)有相同 的复杂性,且若IP可行解非空,则:0,()LRIPzzmin.(5.2.1)Tnc xst
6、 BxdxZ()min():,.TTTLRnZcA xbLRBxdstxZ(简单约束)min,():.,.TIPnZc xAxbIPstBxdxZ难约束(简单约束)证明:注:定理5.2.1说明拉格朗日松弛是IP问题的一个下界,但我们应该求与IP最接近的下界,即:0()max()LDLRLDzz定义5.2.1 若 ,满足以下条件,则称D为凸集.,x yD(1),01xyD1()|,1iiiiiiCon QPPR|1,2,iQP i对于离散点集 ,其凸包定义为:显然Con(Q)为凸集.定理5.2.2 若拉格朗日对偶问题的目标值有限,则min|,()|,TLDnzc x Axb xCon QQx B
7、xd xZ其中:证明:()()()min()min()min()TTTLRx QTTTx Con QTTx Con QzcA xbcA xbc xbAx设Con(Q)的极点为 ,极方向为 则:|kxkK|jrjJ,()0min()(),:TTjTTTTkTkx Qif jJcA rcA xbc xbAxother kK 由LD问题有限,则有:000max()maxmin()TTkTkLDLRk Kzzc xbAx Tj存在,jJ,使得(c-A)r0上述问题等价于:max(),.()0,0LDTkTkTTjzc xbAxkKstcA rjJ 整理得:max(),.,0LDTkTkTjTjzAxb
8、c xkKstArc rjJ 其对偶问题为:min()1.()0,;0,.kLDkjjk Kj Jkk Kkjkkkk Kk Kk KkjzcTxrstAxrbkKjJ即有:()min.TLDx Con Qzc xstAxb推论推论5.2.1:对于任给c,整数规划问题IP和拉 格 朗日对偶问题LD的目标值相等的充要条件为:(|)()|nnCon QxRAxbCon QxRAxb证:显然有|()|nnQxRAxbCon QxRAxb(|)()|)()|nnnCon QxRAxbCon Con QxRAxbCon QxRAxb从而有:再由定理5.2.2:(|)()|minminnnTTIPLDx
9、Con Qx RAx bx Con Qx RAx bzc xzc x若对任何c有 ,则问题得证.IPLDzz例5.2.1 假设整数规划问题IP12121212122min 7224520227.5.2.224IPzxxxxxxxxstxxxZ 第一个约束为复杂约束,其拉格朗日松弛后的模型LR为:121212122()min(7)(22)4 520227.25.2.34LRzxxxxxxstxxxZ 43211234l2l1l4l3EDCBA41(,)1717T5.2.3图解示意下降方向最优解 (7,2)(3,4)-29 (7.5,1)(4,0)-32 (8,0)(4,0)-32()LRz012
10、1(7,22)T12(),()Txx(,*)LRzx22722(,)53655365T单位化下降方向:2272212lim(,)(,)5553655365TT最优值只能在(4,0)和(3,4)两点得到,过这两点的直线方程:y+x4=16.其垂直方向为:41(,)1717T22722411,(,)9171753655365T综合有:1290119()()281992889LRLDLRzzz 例5.2.2(继5.2.1)例5.2.1中 (2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,0)TTTTTTTTQ 12121(|24)2()|24nnSCon Qx
11、RxxSCon QxRxx 43211234DCB1224xx 43211234DCB1224xx S1S2由推论5.2.1可以知道,由两个因素有关:第一个因素是目标函数中的C,推论5.2.1要求对所有的C满足S1=S2,但也可能存在某个C使得 IPLDzzIPLDzz第二个因素是可行解的区域.由上面的图形可知,SI和S2不同,所以存在一个C,使得 不为零,如在例5.2.1中,在 达到拉格朗日对偶问题的最优值,其最优解为(4,0);,其一个最优解也为(4,0).由此我们可以知道,即使拉格朗日松弛在某个 下达到的最优解为原问题的可行解,我们也不能断言 .除非此时 .IPLDzz8289LDz 1
展开阅读全文