书签 分享 收藏 举报 版权申诉 / 49
上传文档赚钱

类型人教初中数学九上《用频率估计概率》课件-(高效课堂)获奖-人教数学2022-.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5041531
  • 上传时间:2023-02-05
  • 格式:PPT
  • 页数:49
  • 大小:2.42MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人教初中数学九上《用频率估计概率》课件-(高效课堂)获奖-人教数学2022-.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    用频率估计概率 初中 数学 频率 估计 概率 课件 高效 课堂 获奖 2022 下载 _九年级上册_人教版(2024)_数学_初中
    资源描述:

    1、普查普查 为了一定的目的为了一定的目的,而对考察对象进行而对考察对象进行全面的调查全面的调查,称为普查称为普查;频数频数 在考察中在考察中,每个对象出现的次数每个对象出现的次数;频率频率 每个对象出现的次数与总次数的比每个对象出现的次数与总次数的比值称为频率值称为频率.总体总体 所要考察对象的全体所要考察对象的全体,称为总体称为总体,个体个体 组成总体的每一个考察对象称为个体组成总体的每一个考察对象称为个体;抽样调查抽样调查 从总体中抽取局部个体进行调查从总体中抽取局部个体进行调查,这种调查称为抽样调查这种调查称为抽样调查;样本样本 从总体中抽取的一局部个体叫做总体从总体中抽取的一局部个体叫做

    2、总体的一个样本的一个样本;复习回顾复习回顾w必然事件必然事件w不可能事件不可能事件w可能性可能性0 (50%)1(100%)不可不可能发能发生生可可能能发发生生必然必然发生发生w随机事件随机事件(不确定事件不确定事件)概率概率 事件发生的可能性事件发生的可能性,也称为事件发生也称为事件发生的概率的概率.w必然事件发生的概率为必然事件发生的概率为1(1(或或100%),100%),记作记作P(P(必然事件必然事件)=1;)=1;w不可能事件发生的概率为不可能事件发生的概率为0,0,记作记作P(P(不可能事件不可能事件)=0;)=0;w随机事件随机事件(不确定事件不确定事件)发生的概率介于发生的概

    3、率介于0 0 1 1之之间间,即即0P(0P(不确定事件不确定事件)1.)1.w如果如果A A为为随机事件随机事件(不确定事件不确定事件),),那么那么0P(A)1.0P(A)1.用列举法求概率的条件用列举法求概率的条件:mP A=n(1)(1)实验的所有结果是有限个实验的所有结果是有限个(n)(n)(2)(2)各种结果的可能性相等各种结果的可能性相等.当实验的所有结果不是有限个当实验的所有结果不是有限个;或各种或各种可能结果发生的可能性不相等时可能结果发生的可能性不相等时.又该如何又该如何求事件发生的概率呢求事件发生的概率呢?教学目标教学目标过程与方法过程与方法 当事件的试验结果不是有限个或

    4、结果当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计发生的可能性不相等时,要用频率来估计概率。通过试验,理解当试验次数较大时概率。通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步开展概试验频率稳定于理论概率,进一步开展概率观念。率观念。知识与能力知识与能力 通过实验及分析试验结果、收集数据、通过实验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频处理数据、得出结论的试验过程,体会频率与概率的联系与区别,开展学生根据频率与概率的联系与区别,开展学生根据频率的集中趋势估计概率的能力。率的集中趋势估计概率的能力。通过具体情境使学生体会到概率是描述不通过具

    5、体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题学会用数学的思维方式思考生活中的实际问题的习惯。在活动中进一步开展合作交流的意识的习惯。在活动中进一步开展合作交流的意识和能力。和能力。教学目标教学目标情感态度与价值观情感态度与价值观教学重难点教学重难点教学重点教学重点 理解当试验次数较大时,试验频理解当试验次数较大时,试验频率稳定于理论概率。率稳定于理论概率。教学难点教学难点对概率的理解。对概率的理解。事件发生的概率与事件发生的频事件发生的概率与事件发生的频率有什么联系和区别?率有什么联系和区

    6、别?数学史实数学史实人们在长期的实践中发现人们在长期的实践中发现,在随机试验中在随机试验中,由于众多微小的偶然因素的影响由于众多微小的偶然因素的影响,每次测得的结每次测得的结果虽不尽相同果虽不尽相同,但大量重复试验所得结果却能反但大量重复试验所得结果却能反响客观规律响客观规律.这称为大数法那么这称为大数法那么,亦称大数定律亦称大数定律.由频率可以估计概率是由频率可以估计概率是由瑞士数学家雅各布由瑞士数学家雅各布伯努伯努利利1654165417051705最早说明最早说明的,因而他被公认为是概率的,因而他被公认为是概率论的先驱之一论的先驱之一频率稳定性定理频率稳定性定理归纳:归纳:一般地一般地,

    7、在大量重复试验中在大量重复试验中,如果某如果某事件事件A A发生的频率发生的频率 稳定在某个常数稳定在某个常数p p附近附近,那么事件那么事件A A的概率的概率P(A)=P.P(A)=P.m mn n例例1.某种油菜籽在相同条件下的发芽试验结果表:某种油菜籽在相同条件下的发芽试验结果表:当试验的油菜籽的粒数很多时,油菜当试验的油菜籽的粒数很多时,油菜籽发芽的频率籽发芽的频率 接近于常数接近于常数0.9,于是我们,于是我们说它的说它的概率是概率是0.90.9。mn例例2.2.对某电视机厂生产的电视机进行抽样对某电视机厂生产的电视机进行抽样检测的数据如下:检测的数据如下:抽取抽取台数台数50100

    8、2003005001000优等优等品数品数40921922854789541计算表中优等品的各个频率;计算表中优等品的各个频率;2该厂生产的电视机优等品的概率是多少?该厂生产的电视机优等品的概率是多少?概率是概率是频率频率练习:某射击运发动在同一条件下练习射击,结果如下表所示:射击次数n102050100200500击中靶心次数m 8194492178452击中靶心频率m/n(1)计算表中击中靶心的各个频率并填入表中.(2)这个运发动射击一次,击中靶心的概率多少 在相同情况下随机的抽取若干个体进行在相同情况下随机的抽取若干个体进行实验实验,进行实验统计进行实验统计,并计算事件发生的并计算事件发

    9、生的频率频率 ,根据频率估计该事件发生的概率根据频率估计该事件发生的概率.mn 当试验次数很大时,一个事件发生频率也稳定在相应的概率附近.因此,我们可以通过屡次试验,用一个事件发生的频率来估计这一事件发生的概率.知识要点知识要点 某林业部门要考察某种幼树在一某林业部门要考察某种幼树在一定条件的移植成活率,应该用什么具体做法?定条件的移植成活率,应该用什么具体做法?问题问题1 某水果公司以某水果公司以2 2元元/千克的本钱新进了千克的本钱新进了1000010000千克柑橘千克柑橘,如果公司希望这些柑橘能够如果公司希望这些柑橘能够获得利润获得利润50005000元元,那么在出售柑橘时那么在出售柑橘

    10、时(去掉坏去掉坏的的),),每千克大约定价为多少元每千克大约定价为多少元?问题问题2 上面两个问题上面两个问题,都不属于结果可能性相都不属于结果可能性相等的类型等的类型.移植中有两种情况活或死移植中有两种情况活或死.它们的它们的可能性并不相等可能性并不相等,事件发生的概率并不都为事件发生的概率并不都为50%.50%.柑橘是好的还是坏的两种事件发生的概柑橘是好的还是坏的两种事件发生的概率也不相等率也不相等.因此也不能简单的用因此也不能简单的用50%50%来表示来表示它发生的概率它发生的概率.应该如何做呢应该如何做呢?翻翻到课本到课本143143页页.分析:分析:幼苗移植成活率是实际问题中的一种概

    11、率。幼苗移植成活率是实际问题中的一种概率。这个实际问题中的移植试验不属于各种结果可这个实际问题中的移植试验不属于各种结果可能性相等的类型,所以成活率要由频率去估计。能性相等的类型,所以成活率要由频率去估计。在同样条件下,大量地对这种幼苗进行移在同样条件下,大量地对这种幼苗进行移植,并统计成活情况,计算成活的频率。如果植,并统计成活情况,计算成活的频率。如果随着移植棵数随着移植棵数n n的越来越大,频率的越来越大,频率 越来越稳越来越稳定于某个常数,那么这个常数就可以被当作成定于某个常数,那么这个常数就可以被当作成活率的近似值。活率的近似值。下表是一张模拟的统计表,请填出表中的下表是一张模拟的统

    12、计表,请填出表中的空缺,并完成表后的填空。空缺,并完成表后的填空。nm某林业部门要考查某种幼树在一定条件下某林业部门要考查某种幼树在一定条件下的移植成活率的移植成活率,应采用什么具体做法应采用什么具体做法?观察在各次试验中得到的幼树成活的频观察在各次试验中得到的幼树成活的频率,谈谈你的看法率,谈谈你的看法估计移植成活率估计移植成活率移植总数(移植总数(n)成活数(成活数(m)108成活的频率成活的频率()nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.902是实际问题中的一种概

    13、率是实际问题中的一种概率,可理解为成活的概率可理解为成活的概率.估计移植成活率估计移植成活率由下表可以发现,幼树移植成活的频率在由下表可以发现,幼树移植成活的频率在左右摆动,左右摆动,并且随着移植棵数越来越大,这种规律并且随着移植棵数越来越大,这种规律愈加明显愈加明显.所以估计幼树移植成活的概率为所以估计幼树移植成活的概率为移植总数(移植总数(n)成活数(成活数(m)108成活的频率成活的频率()nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.90251.5450044.574

    14、5039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率(柑橘损坏的频率()损坏柑橘质量(损坏柑橘质量(m)/千克千克柑橘总质量(柑橘总质量(n)/千克千克nm完成下表完成下表,某水果公司以某水果公司以2 2元元/千克的本钱新进了千克的本钱新进了10 00010 000千克柑橘千克柑橘,如如果公司希望这些柑橘能够获得利润果公司希望这些柑橘能够获得利润5 0005 000元元,那么在出售柑橘那么在出售柑橘(已去掉损坏的柑橘已去掉损坏的柑橘)时时,每千克大约定价为多少元比较适宜每千克大约定价为多

    15、少元比较适宜?为简单起见,我们能否直接把表中的为简单起见,我们能否直接把表中的500500千克柑橘对应的柑橘损坏的频率看作柑千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?橘损坏的概率?利用你得到的结论解答以下问题利用你得到的结论解答以下问题:根据频率稳定性定理,在要求精度不是很高的情况下,根据频率稳定性定理,在要求精度不是很高的情况下,不妨用表中的最后一行数据中的频率近似地代替概率不妨用表中的最后一行数据中的频率近似地代替概率.51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.

    16、5050柑橘损坏的频率(柑橘损坏的频率()损坏柑橘质量(损坏柑橘质量(m)/千克千克柑橘总质量(柑橘总质量(n)/千克千克nm 为简单起见,我们能否直接把表中的为简单起见,我们能否直接把表中的500500千克柑橘对应的柑橘损坏的频率看作柑千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?橘损坏的概率?完成下表完成下表,利用你得到的结论解答以下问题利用你得到的结论解答以下问题:1.1.一水塘里有鲤鱼、鲫鱼、鲢鱼共一水塘里有鲤鱼、鲫鱼、鲢鱼共1 0001 000尾,一渔民通过屡次捕获实验后发现:鲤尾,一渔民通过屡次捕获实验后发现:鲤鱼、鲫鱼出现的频率是鱼、鲫鱼出现的频率是31%31%和和42%42%

    17、,那么这,那么这个水塘里有鲤鱼个水塘里有鲤鱼_尾尾,鲢鱼鲢鱼_尾尾.3102702.2.某厂打算生产一种中学生使用的笔袋,某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了厂就笔袋的颜色随机调查了5 0005 000名中学生,名中学生,并在调查到并在调查到1 0001 000名、名、2 0002 000名、名、3 0003 000名、名、4 0004 000名、名、5 0005 000名时分别计算了各种颜色名时分别计算了各种颜色的频率,绘制折线图如下:的频率,绘制折线图如下:做一做做一做(1)(1)随着调查次数的增

    18、加,红色的频率如何变化?随着调查次数的增加,红色的频率如何变化?(2)(2)你能你能估计估计调查到调查到10 00010 000名同学时,红色的频率是多少吗?名同学时,红色的频率是多少吗?估计调查到估计调查到10 00010 000名同学时,红色的频率大约仍是名同学时,红色的频率大约仍是40%40%左右左右.随着调查次数的增加,红色的频率根本稳定在随着调查次数的增加,红色的频率根本稳定在40%40%左右左右.(3)(3)假设你是该厂的负责人假设你是该厂的负责人,你将如何安排生产各种颜色的产量?你将如何安排生产各种颜色的产量?红、黄、蓝、绿及其它颜色的生产比红、黄、蓝、绿及其它颜色的生产比例大约

    19、为例大约为4:2:1:1:2.4:2:1:1:2.3.3.如图如图,长方形内有一不规那么区域长方形内有一不规那么区域,现在玩现在玩投掷游戏投掷游戏,如果随机掷中长方形的如果随机掷中长方形的300300次中,次中,有有100100次是落在不规那么图形内次是落在不规那么图形内.【拓展拓展】你能设计一个利用频你能设计一个利用频率估计概率的实验方法估率估计概率的实验方法估算该不规则图形的面积的算该不规则图形的面积的方案吗方案吗?(1)(1)你能估计出掷中不规那么图形的概率吗?你能估计出掷中不规那么图形的概率吗?(2)(2)假设该长方形的面积为假设该长方形的面积为150,150,试估计不规试估计不规那么

    20、那么 图形的面积图形的面积.了解了一种方法了解了一种方法-用屡次试验频率用屡次试验频率 去估计概率去估计概率体会了一种思想:体会了一种思想:用样本去估计总体用样本去估计总体用频率去估计概率用频率去估计概率弄清了一种关系弄清了一种关系-频率与概率的关系频率与概率的关系当当试验次数很多或试验时样本容量足够大试验次数很多或试验时样本容量足够大时时,一件事件发生的一件事件发生的频率频率与相应的与相应的概率概率会非常会非常接近接近.此时此时,我们可以用一件事件发生的我们可以用一件事件发生的频率频率来来估计这一事件发生的估计这一事件发生的概率概率.小红和小明在操场上做游戏,他们先小红和小明在操场上做游戏,

    21、他们先在地上画了半径分别为在地上画了半径分别为2m2m和和3m3m的同心圆的同心圆(如如图图),蒙上眼在一定距离外向圈内掷小石子,蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,掷中里面小圈小明胜,掷中阴影小红胜,掷中里面小圈小明胜,未掷入大圈内不算未掷入大圈内不算,你认为游戏公平吗,你认为游戏公平吗?为什么?为什么?3m2m 一个学习校小组有一个学习校小组有6 6名男生名男生3 3名女生。老师名女生。老师要从小组的学生中先后随机地抽取要从小组的学生中先后随机地抽取3 3人参加几人参加几项测试,并且每名学生都可被重复抽取。你能项测试,并且每名学生都可被重复抽取。你能设计一种试验来估计设计一种

    22、试验来估计“被抽取的被抽取的3 3人中有人中有2 2名男名男生生1 1名女生的概率吗?名女生的概率吗?从表可以发现,幼苗移植成活的频从表可以发现,幼苗移植成活的频率在(率在()左右摆动,并且)左右摆动,并且随着统计数据的增加,这种规律愈随着统计数据的增加,这种规律愈加明显,所以估计幼树移植成活的加明显,所以估计幼树移植成活的概率为(概率为()。)。0.90.9课堂小结课堂小结概率概率 事件发生的可能性事件发生的可能性,也称为事件发生也称为事件发生的概率的概率.w必然事件发生的概率为必然事件发生的概率为1(1(或或100%),100%),记作记作P(P(必然事件必然事件)=1;)=1;w不可能事

    23、件发生的概率为不可能事件发生的概率为0,0,记作记作P(P(不可能事件不可能事件)=0;)=0;w随机事件随机事件(不确定事件不确定事件)发生的概率介于发生的概率介于0 0 1 1之之间间,即即0P(0P(不确定事件不确定事件)1.)1.w如果如果A A为为随机事件随机事件(不确定事件不确定事件),),那么那么0P(A)1.0P(A)1.当试验次数很大时,一个事件发生频率也稳定在相应的概率附近.因此,我们可以通过屡次试验,用一个事件发生的频率来估计这一事件发生的概率.轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活

    24、用品,都可品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1 1如图,把一张纸对折,剪出一个图案折如图,把一张纸对折,剪出一个图案折痕处不要完全剪断,再翻开这张对折的纸,就得到了痕处不要完全剪断,再翻开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一

    25、个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它的对称轴这时,我们也说这个图形关于这条 直线成轴对称直线成轴对称共同特征:共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合的图形重合 探索新知探索新知问题问题2 2观察下面每对图形如图,你能类比前观察下面每对图形如图,你能类比前面的内容概括出它们的共同特征吗?面的内容概括出它们的共同特征吗?追问追问1你能再举出一些两个图形成轴对称的例子吗?你能再举

    26、出一些两个图形成轴对称的例子吗?探索新知探索新知把一个图形沿着某一条直线折叠,如果它能够与另把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称轴,折叠后重合的点是对轴对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点应点,叫做对称点 两者的区别:两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图轴对称图形指的是一个图形沿对称轴折叠后这个图形的两局部能完全重合,而两个图形成轴对称指的是两形的两局部能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称

    27、轴折叠后能个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合够重合探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?两者的联系:两者的联系:把成轴对称的两个图形看成一个整体,它就是一个把成轴对称的两个图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两个图轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称形,这两个图形关于这条轴对称 探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图

    28、形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?追问追问1你能说明其中你能说明其中的道理吗?的道理吗?探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线 段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问2 2上面的问题说明上面的问题说明“如果如果ABC ABC 和和ABCABC关于直线关于直线MN MN 对称,那么,直线对称,那么,直线MN MN 垂直垂直线段线段AAAA,BBBB和和CCCC,并且直线,并且直线MN MN

    29、 还平分线段还平分线段AAAA,BBBB和和CCCC如如果将其中的果将其中的“三角形改为三角形改为“四边形四边形“五边形五边形其其他条件不变,上述结论还成他条件不变,上述结论还成立吗?立吗?ABCMNPABC经过线段中点并且垂直经过线段中点并且垂直于这条线段的直线,叫做这于这条线段的直线,叫做这条线段的垂直平分线条线段的垂直平分线 探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问3你能

    30、用数学语言概括前面的结论吗?你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:成轴对称的两个图形的性质:如果两个图形关于某条如果两个图形关于某条直线对称,那么对称轴是任直线对称,那么对称轴是任何一对对应点所连线段的垂何一对对应点所连线段的垂直平分线即对称点所连线直平分线即对称点所连线段被对称轴垂直平分;对称段被对称轴垂直平分;对称轴垂直平分对称点所连线段轴垂直平分对称点所连线段 ABCMNPABC结论:结论:直线直线l l 垂直线段垂直线段AAAA,BBBB,直线直线l l平分线段平分线段AAAA,BBBB或直或直线线l l 是线段是线段AAAA,BBBB的垂直平分的垂直平分线线 探索

    31、新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结 论?能说明理由吗?论?能说明理由吗?ABlAB追问你能用数学语言概括前面追问你能用数学语言概括前面的结论吗?的结论吗?探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结论?能说明理由吗?论?能说明理由吗?ABlAB轴对称图形的性质:轴对称图形的性质:轴对称图形的对称轴,是任何轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线一对对应点所连线段的垂直平分线 探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一

    32、个轴对称图形,你能发现什么结结 论?能说明理由吗?论?能说明理由吗?ABlAB课堂练习课堂练习练习练习1 1如下图的每个图形是轴对称图形吗?如如下图的每个图形是轴对称图形吗?如果是,指出它的对称轴果是,指出它的对称轴 课堂练习课堂练习练习练习2 2如下图的每幅图形中的两个图案是轴对称如下图的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对的吗?如果是,试着找出它们的对称轴,并找出一对对称点称点 1 1本节课学习了哪些主要内容?本节课学习了哪些主要内容?2 2轴对称图形和两个图形成轴对称的区别与联系是轴对称图形和两个图形成轴对称的区别与联系是 什么?什么?3 3成轴对称的两个图形有什么性质?轴对称图形有成轴对称的两个图形有什么性质?轴对称图形有 什么性质?我们是怎么探究这些性质的?什么性质?我们是怎么探究这些性质的?课堂小结课堂小结教科书习题教科书习题13.1第第1、2、3、4、5题题 布置作业布置作业

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教初中数学九上《用频率估计概率》课件-(高效课堂)获奖-人教数学2022-.ppt
    链接地址:https://www.163wenku.com/p-5041531.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库