人大版微积分第三版课件11.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人大版微积分第三版课件11.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人大 微积分 第三 课件 11
- 资源描述:
-
1、人大版微积分第三版课件人大版微积分第三版课件11 a.高等数学高等数学研究的对象研究的对象:函数函数b.初等数学初等数学:主要是离散量的运算体系主要是离散量的运算体系(加加,减减,乘乘,除除)连续量随另外一个连续量连续地变化连续量随另外一个连续量连续地变化(函数的概念函数的概念).连续量的运算体系及其数学理论连续量的运算体系及其数学理论(微积分微积分)c.两种体系的区别两种体系的区别.初等数学主要是恒等变形技巧初等数学主要是恒等变形技巧;而而高等数学则是用不等式来刻划等式高等数学则是用不等式来刻划等式(用极限的概念用极限的概念)绪绪 论论 初、高中:初、高中:从填鸭式从填鸭式 启发式启发式,以
2、教师为主以教师为主,强烈地依赖于教师。强烈地依赖于教师。大学:大学:从启发式从启发式 个人自发个人自发,以学生本身为主,以学生本身为主,教师引导。教师引导。e.微积分的发展历史微积分的发展历史15世纪以前是它的概念的萌芽时期,主要是阿基米德(世纪以前是它的概念的萌芽时期,主要是阿基米德(Archimedes公元前公元前287212)的穷竭法和刘徽的割圆术的穷竭法和刘徽的割圆术d.学习方法的不同学习方法的不同数学基本完成时期,也是变量数学的酝酿时期,微积分正式进入了酝酿阶段数学基本完成时期,也是变量数学的酝酿时期,微积分正式进入了酝酿阶段16世纪前后约世纪前后约200年的时间是古已有之的常量年的
3、时间是古已有之的常量17世纪上半叶,微积分的奠基工作在紧锣密鼓世纪上半叶,微积分的奠基工作在紧锣密鼓地进行着,最主要的先驱有法国的帕斯卡(地进行着,最主要的先驱有法国的帕斯卡(Pascal1623-1662)和费马(和费马(Fermat16011665),),英国英国16301677)的瓦里士(的瓦里士(Wallis16161703)和)和 巴罗(巴罗(Barrow莱布尼兹莱布尼兹Leibniz(1646-1716)在前人的基础上创在前人的基础上创18世纪是关于微积分的基础的讨论和研究世纪是关于微积分的基础的讨论和研究19世纪,从形式演算世纪,从形式演算 严格的科学体系,严格的科学体系,17世
4、纪下半叶,牛顿(世纪下半叶,牛顿(Newton 1642-1727)和和立了微积分及其演算体系立了微积分及其演算体系的时期的时期波尔察诺(波尔察诺(Bolzano 1781-1848),),定了严格的分析学基础,定了严格的分析学基础,戴德金戴德金 (Dedekind 1831-1916)和康托和康托 (Cantor 1845-1918)等)等1872年建立了严格的年建立了严格的 实数系理论微积分严密化的任务终于在他实数系理论微积分严密化的任务终于在他 们手中完成了们手中完成了哥西哥西(Cauchy 1789-1857),维尔斯特拉斯,维尔斯特拉斯(Weierstr-ass 1815-1897)
5、等数学家给出了)等数学家给出了分析学一系列基本概念的精确定义,从而奠分析学一系列基本概念的精确定义,从而奠实数理论为基础实数理论为基础演算体系演算体系极限概念刻划极限概念刻划 基石:实数连续统基石:实数连续统 学习目的:掌握微积分,极限,实数连续统的概念和方法,更主要的是,培养学习目的:掌握微积分,极限,实数连续统的概念和方法,更主要的是,培养自己的积极思考问题和解决问题的能力。自己的积极思考问题和解决问题的能力。微积分是以极限论作为基础,而极限论又以微积分是以极限论作为基础,而极限论又以 参考书目:参考书目:1 1 高等数学高等数学同济大学出版;同济大学出版;2 2 微积分微积分配套习题配套
6、习题人民大学出版社;人民大学出版社;3.3.高等数学习题集高等数学习题集同济版。同济版。高等数学的学习方法因人而异高等数学的学习方法因人而异在学习中注意以下几个环节在学习中注意以下几个环节 1.课前预习课前预习2.认真听讲认真听讲3.复习巩固复习巩固本学科的学习基本方法本学科的学习基本方法 4.作业作业5.答疑答疑6.融会贯通融会贯通1.我们用符号“”表示“任取”或“对于任意的”或“对于所有的”,符号“”称为全称量词.1 1 集合,符号集合,符号2.我们用符号“”表示“存在”.例:命题“对任意的实数x,都存在实数y,使得x+y=1”可表示为“xR,yR,使x+y=1”符号“”称为存在量词.3.
7、我们用符号“”表示“充分条件”比如,若用p,q分别表示两个命题或陈述句.或“推出”这一意思.则“p q”表示“若p成立,则q也成立”.即p是q成立的充分条件.4.我们用符号“”表示“当且仅当”比如“p q”表示“p成立当且仅当q成立”或者说p成立的充要条件是q成立.或“充要条件”这一意思.一、集合(set)1.集合集合:具有某种特定性质的事物的总体具有某种特定性质的事物的总体.组成这个集合的事物称为该集合的元素组成这个集合的事物称为该集合的元素.12(1),nAa aa列举法 )2(所具有的特征所具有的特征描述法描述法xxM ,Ma,Ma 记为记为唯一确定的特性:任意对象是否为该集合的元素,可
8、唯一判别。唯一确定的特性:任意对象是否为该集合的元素,可唯一判别。(3)文氏图文氏图2.表示法表示法:(1)分为分为 有限集和无限集有限集和无限集3.几种集合几种集合:(2)常用数集常用数集N-自然数集自然数集Z-整数集整数集Q-有理数集有理数集R-实数集实数集(3)不含任何元素的集合称为空集不含任何元素的集合称为空集.记记作作01,2 xRxx例如例如(4)由所研究的所有事物构成的集合称为全集由所研究的所有事物构成的集合称为全集注意注意:0,都不是空集,前者含有元素0,后者以 为其元素U记作.,)1(的的子子集集是是就就说说则则必必若若BABxAx .BA 记作记作.,:RQQZZN 例例如
9、如空集为任何集合的子集空集为任何集合的子集.(5)子集.BA或结论:集合集合A为自己的子集为自己的子集.AA,A A 任意,AB BCAC若则(1),.ABBAAB若且就称集合 与 相等,2,1 A例如例如,0232 xxxC.CA 则则记为记为 A=B(2)集合的并集合的并 BxAxxdefBA 或或 集合的运算:性质:,AABBAB,AAAUU=AAA(3)集合的交运算集合的交运算 BxAxxdefBA 且且 性质:,AAUAAAA=,ABAABB(4)集合的差运算集合的差运算 BxAxxdefBA 且且 BA AAB例:,2,3AB=1,2,3,4,7,1,2,3,4,7,9AB=1,2
10、,3,4,7?AB(5)集合的补运算集合的补运算 A defx xUxA且性质:AAAA=U,性质:性质:ABBA=1、交换律交换律ABBA=2、结合律、结合律DBADBA)(=)(DBADBA)(=)(3、分配律、分配律)()(=)(DABADBA)()(=)(DABADBADABBDA4、摩根定律、摩根定律ABABABAB设设A和和B是两个集合是两个集合,称称()x,y xA yB且 为集合为集合A 与与B的的 Descartes 乘积集合,乘积集合,.BA记记为为例例1.1.4有一家生产窗帘的厂,所用的面料颜色有红、绿、蓝三种,所用的工有一家生产窗帘的厂,所用的面料颜色有红、绿、蓝三种,
11、所用的工艺有抽纱、提花、印染、刺绣等四种,若用艺有抽纱、提花、印染、刺绣等四种,若用三三、集合的笛卡尔(集合的笛卡尔(Descartes )乘积乘积B抽纱,提花,印染,刺绣抽纱,提花,印染,刺绣AxyxBA),(By并且表示的是该厂生产的所有的窗帘品种表示的是该厂生产的所有的窗帘品种如(红,提花)、(蓝,印染)、(绿,抽纱)等如(红,提花)、(蓝,印染)、(绿,抽纱)等表示加工工艺的集合,那么它们的表示加工工艺的集合,那么它们的Descartes乘积集合乘积集合A红,绿,蓝红,绿,蓝表示面料颜色的集合,表示面料颜色的集合,特别特别,表表示示的的是是平平面面直直角角RRDescartes坐坐标标
12、系系2.记记 作作R:.直直角角坐坐标标系系表表示示的的是是空空间间DescartesRRR .3记记作作:R:绝对值绝对值(absolute):00aaaaa)0(a运算性质运算性质:;baab ;baba.bababa )0(aax;axa )0(aax;axax 或或绝对值不等式绝对值不等式:yxyx|1.实数集实数集.区间区间:是指介于某两个实数之间的全体实数是指介于某两个实数之间的全体实数.这两个实数叫做区间的端点这两个实数叫做区间的端点.abIbaRba .,且且bxax 称为开区间称为开区间,),(ba记作记作bxax 称为闭区间称为闭区间,ba记记作作oxaboxab两端点间的
13、距离为区间长度两端点间的距离为区间长度 I(1)有限区间有限区间bxax bxax 称为半开区间称为半开区间,称为半开区间称为半开区间,),ba记作记作,(ba记记作作oxaoxb(2)无限区间无限区间),xaxa Def),(bxxb Def),(Rxx Def只只是是一一个个记记号号。为为负负无无穷穷大大为为正正无无穷穷大大,其其中中 .邻域邻域(neighborhood):.0,且且是两个实数是两个实数与与设设a).(0aU 记记作作,叫叫做做这这邻邻域域的的中中心心点点a.叫做这邻域的半径叫做这邻域的半径 axxaxaxaU )(xa a a ,邻邻域域的的去去心心的的点点 a0 )(
14、0 axxaU)(,aUaaxx 记记为为邻邻域域的的称称为为点点数数集集 =(x0 ,x0+),(),(0000 xxxx1.3:函数概念例如例如 圆内接正多边形的周长圆内接正多边形的周长nnrSn sin2,5,4,3 n3S5S4S6S圆内接正圆内接正n 边形边形Orn)邮件的费用依赖与邮件的重量,邮局公布的费用表可根据邮件的费用依赖与邮件的重量,邮局公布的费用表可根据邮件的重量邮件的重量W W确定邮件的费用确定邮件的费用C C。W W1 W2 WNC C1 C2 CN 自动纪录仪画出了一天中气温随时间变化的曲线图,由图形自动纪录仪画出了一天中气温随时间变化的曲线图,由图形可以找出在一天
15、中的某个时刻可以找出在一天中的某个时刻t t的温度值的温度值T T。tTo 真空中初速为零的自由落体,下落路程真空中初速为零的自由落体,下落路程S S与时间与时间t t的关系为:的关系为:,设这一运动花费,设这一运动花费T T秒钟,则秒钟,则t t 0,T0,T。221gts 因变量因变量自变量自变量.)(,000处处的的函函数数值值为为函函数数在在点点称称时时当当xxfDx (),.Zy yf xxD函数值全体组成的数集称为函数的值域数集数集D叫做这个函数的叫做这个函数的定义域定义域(Domain of definition)(xfy 定义定义函数的两要素函数的两要素:定义域定义域与与对应法
16、则对应法则.、约定约定:定义域是自变量所能取的使算式有意义的一切实数值定义域是自变量所能取的使算式有意义的一切实数值.21xy 例例如如,1,1:D211xy 例例如如,)1,1(:Doxy),(00yx0 xWD)(0 xfy 、函数的表示、函数的表示函数两要素:定义域与对应法则函数两要素:定义域与对应法则 (1)(1)分段表示分段表示设设 A,B 是两个互不相交的实数集合,是两个互不相交的实数集合,)()()(xxxf)()(xx和和是分别定义在集合是分别定义在集合A和集合和集合B上的函数,则上的函数,则BxAx是定义在集合是定义在集合.上上的的函函数数BA这样的表示方法这样的表示方法称为
17、称为函数的分段表示.(2)(2)隐式表示隐式表示通过方程通过方程 F(x,y)=0 来确定的变量来确定的变量x与与y之间函数之间函数关系的方式称为关系的方式称为函数的隐式表示.(3)(3)参数表示参数表示通过建立变量通过建立变量 t 与与 x,t 与与 y之间的函数关系,间接之间的函数关系,间接的确定的确定 x 与与 y 之间的函数关系之间的函数关系.即即)()(tyytxx,bat这种表示法称为这种表示法称为函数的参数表示.、函数相等、函数相等定义:定义:如果两个函数的定义域和对应法则相同,我们称这两个函数是相同的函数。例例 判断下列几对函数是否相等判断下列几对函数是否相等.(1)f(x)=
展开阅读全文