书签 分享 收藏 举报 版权申诉 / 25
上传文档赚钱

类型北师大版八年级下册数学《1.1 第1课时 等腰三角形的性质》课件.pptx

  • 上传人(卖家):大王叫我来巡山
  • 文档编号:503673
  • 上传时间:2020-05-03
  • 格式:PPTX
  • 页数:25
  • 大小:1.64MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《北师大版八年级下册数学《1.1 第1课时 等腰三角形的性质》课件.pptx》由用户(大王叫我来巡山)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    1.1 第1课时 等腰三角形的性质 北师大版八年级下册数学1.1 第1课时 等腰三角形的性质课件 北师大 年级 下册 数学 1.1 课时 等腰三角形 性质 课件 下载 _八年级下册_北师大版(2024)_数学_初中
    资源描述:

    1、1.1 等腰三角形 第一章 三角形的证明 导入新课 讲授新课 当堂练习 课堂小结 第第1 1课时课时 三角形的全等和等腰三角形的性质三角形的全等和等腰三角形的性质 北师大版八年级下册数学教学课件 学习目标 1.回顾全等三角形的判定和性质; 2.理解并掌握等腰三角形的性质及其推论,能运用 其解决基本的几何问题.(重点) 导入新课导入新课 情境引入 问题1:图中有些你熟悉的图形吗?它们有什么共同特点? 斜拉桥梁 埃及金字塔 体育观看台架 问题2:建筑工人在盖房子时,用一块等腰三角板放 在梁上,从顶点系一重物,如果系重物的绳子正好经 过三角板底边中点,就说房梁是水平的,你知道其中 反映了什么数学原理

    2、? 七下“轴对称”中学过的等腰三角形的“三线合一”. 思考:你能证明等腰三角形的“三线合一”吗? 问题3 在八上的“平行线的证明”这一章中,我们学 了哪8条基本事实? 1.两点确定一条直线; 2.两点之间线段最短; 3.同一平面内,过一点有且只有一条直线与已知直线 垂直; 4.同位角相等,两直线平行; 5.过直线外一点有且只有一条直线与这条直线平行; 6.两边及其夹角分别相等的两个三角形全等; 7.两角及其夹边分别相等的两个三角形全等; 8.三边分别相等的两个三角形全等. 定理 两角分别相等且其中一组等角的对边相等的两 个三角形全等(AAS). 问题:你能运用基本事实及已经学过的定理证明上 面

    3、的推论吗? 弄清楚证明 一个命题的 一般步骤是 解题的关键 证明一个命题的一般步骤: (1)弄清题设和结论; (2)根据题意画出相应的图形; (3)根据题设和结论写出已知和求证; (4)分析证明思路,写出证明过程. 讲授新课讲授新课 全等三角形的判定和性质 一 已知:如图,A=D,B=E,BC=EF. 求证:ABCDEF. 证明:A+B+C=180, D+E+F=180(三角形内角和等于180), C=180(A+B),F=180(D+E). A=D,B=E(已知), C=F(等量代换). BC=EF(已知), ABCDEF(ASA). F E D C B A 总结归纳 定理 两角分别相等且其

    4、中一组等角的对边相等的两 个三角形全等(AAS). 根据全等三角形的定义,我们可以得到: 全等三角形的对应边相等,对应角相等. 问题1:你还记得我们探索过的等腰三角形的性质吗? 推论:等腰三角形顶角的平分线,底边上的中线 底边 上的高互相重合(三线合一). 问题2:你能利用已有的公理和定理证明这些结论吗? 定理:等腰三角形的两个底角相等. 等腰三角形的性质及其推论 二 问题引入 等腰三角形的两个底角相等. A B C 已知:ABC中,AB=AC, 求证:B=C. 思考:如何构造两个全等的三角形? 定理:等腰三角形的两个底角相等(等边对等角). 如何证明两个 角相等呢? 可以运用全等三 角形的性

    5、质“对 应角相等”来证 议一议:在七下学习轴对称时,我们利用折叠的方 法说明了等腰三角形是轴对称图形,且两个底角相 等,如下图,实际上,折痕将等腰三角形分成了两 个全等的三角形.由此,你得到了什么解题的启发? 已知: 如图,在ABC中,AB=AC. 求证: B= C. A B C D 证明: 作底边的中线AD, 则BD=CD. AB=AC ( 已知 ), BD=CD ( 已作 ), AD=AD (公共边), BAD CAD (SSS). B= C (全等三角形的对应角相等). 在BAD和CAD中 方法一:作底边上的中线 还有其他的 证法吗? 已知: 如图,在ABC中,AB=AC. 求证: B=

    6、 C. A B C D 证明: 作顶角的平分线AD, 则BAD=CAD. AB=AC ( 已知 ), BAD=CAD ( 已作 ), AD=AD (公共边), BAD CAD (SAS). B= C (全等三角形的对应角相等). 方法二:作顶角的平分线 在BAD和CAD中 想一想:由BAD CAD,除了可以得到B= C 之外,你还可以得到那些相等的线段和相等的角?和 你的同伴交流一下,看看你有什么新的发现? 解:BAD CAD,由全等三角形的 性质易得BD=CD,ADB=ADC, BAD=CAD. 又 ADB+ADC=180, ADB=ADC= 90 , 即AD是等腰ABC底边BC上的中线、顶

    7、 角BAC的角平分线、底边BC上的高线 . A B C D 定理:等腰三角形的两个底角相等(等边对等角). A C B 如图,在ABC中, AB=AC(已知), B=C(等边对等角). 证明后的结论,以后可以直接运用. 总结归纳 推论:等腰三角形顶角的平分线、底边上的中线及 底边上的高线互相重合(三线合一). A C B D 1 2 AB=AC, 1=2(已知), BD=CD,ADBC(等腰三角形三线合一). AB=AC, BD=CD (已知), 1=2,ADBC(等腰三角形三线合一). AB=AC, ADBC(已知), BD=CD, 1=2(等腰三角形三线合一). 综上可得:如图,在ABC中

    8、, A B C D 例1 如图,在ABC中 ,AB=AC,点D在AC上, 且BD=BC=AD,求ABC各角的度数. 典例精析 分析:(1)找出图中所有相等的角; (2)指出图中有几个等腰三角形? A=ABD, C=BDC=ABC; ABC, ABD, BCD. A B C D x 2x 2x (3)观察BDC与A、ABD的关 系,ABC、C呢? BDC= A+ ABD=2 A=2 ABD, ABC= BDC=2 A, C= BDC=2 A. (4)设A=x,请把 ABC的内 角和用含x的式子表示出来. A+ ABC+ C=180 , x+2x+2x=180 , A B C D 解:AB=AC,

    9、BD=BC=AD, ABC=C=BDC, A=ABD. 设A=x,则BDC= A+ ABD=2x, 从而ABC= C= BDC=2x, 于是在ABC中,有 A+ABC+C=x+2x+2x=180 , 解得x=36 ,在ABC中, A=36,ABC=C=72. x 2x 2x 在含多个等腰三角形的图形中求角时,常常利用 方程思想,通过内角、外角之间的关系进行转化求解. 归纳 例2 如图,点D、E在ABC的边BC上,ABAC. (1)若ADAE,求证:BDCE; (2)若BDCE,F为DE的中点,如图,求证: AFBC. 解析:(1)过A作AGBC于G,根据等腰三角形的性质 得出BGCG,DGEG

    10、即可证明;(2)先证BFCF, 再根据等腰三角形的性质证明 图 图 A B D G E C A B D E C F 证明:(1)如图,过A作AGBC于G. ABAC,ADAE, BGCG,DGEG, BGDGCGEG,BDCE; (2)BDCE,F为DE的中点,BDDFCE EF,BFCF.ABAC,AFBC. 图 图 A B D G E C A B D E C F 当堂练习当堂练习 1.如图,已知ABAE,BADCAE,要使 ABC AED,还需添加一个条件,这个条件 可以是_ CD(答案不唯一) 2.(1)等腰三角形一个底角为为75, ,它的另外两个角为 _; (2)等腰三角形一个角为36

    11、, ,它的另外两个角为 _; (3)等腰三角形一个角为120, ,它的另外两个角为 _. . 75, 30 72,72或或36,108 30,30 结论:在等腰三角形中,注意对角的分类讨论. 顶角+2底角=180 顶角=1802底角 底角=(180顶角)2 0顶角180 0底角90 课堂小结课堂小结 等腰 三角 形的 性质 等边对等角 三线合一 注意是指同一个三角形中 注意是指顶角的平分线,底 边上的高和中线才有这一性 质.而腰上高和中线与底角 的平分线不具有这一性质. 定理 两角分别相等且其中一组等角的对边相等的两 个三角形全等(AAS). 全等三角形的对应边相等,对应角相等. “部编本”语

    12、文教材解读 “部编本”语文教材的编写背景。 (一)教材要体现国家意识、主流意识形态、党的认同,体现立德树人从娃娃抓起。 (二)体现核心素养,中国学生发展核心素养包括社会责任,国家认同、国际理解、人文底蕴、科学精神、审美情趣、学会学习、身心健康、实践创新。 (三)语文、道德与法制、历史三个学科教材统编是大趋势。 (四)“一标多本”教材质量参差不齐,“部编本”力图起到示范作用。 二、“部编本”教材的编写理念: (一)体现核心价值观,做到“整体规划,有机渗透”。 (二)接地气,满足一线需要,对教学弊病起纠偏作用。提倡全民阅读,注重两个延伸:往课外阅读延伸,往语文生活延伸。 (三)加强了教材编写的科学性,编研结合。 (四)贴近当代学生生活,体现时代性。 “部编本”语文教材的七个创新点: (一)选文创新:课文总数减少,减少汉语拼音的难度。 (二)单元结构创新更加灵活的单元结构体制,综合性更强。 (三)重视语文核心素养,重建语文知识体系。 (四)三位一体,区分不同课型。“教读”、“自读”和“课外阅读”三位一体,整体提高学生的语文素养。 (五)把课外阅读纳入教材体制。 (六)识字写字教学更加讲究科学性。 (七)提高写作教学的效果。 新教材注重了六个意识。 、国家意识。 、目标意识。 、文体意识,非常突出文学素养的培养。 、读书意识。 、主体意识。 、科研意识。 小结:好教,但教好不易。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:北师大版八年级下册数学《1.1 第1课时 等腰三角形的性质》课件.pptx
    链接地址:https://www.163wenku.com/p-503673.html
    大王叫我来巡山
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库