定积分的概念8北师大版课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《定积分的概念8北师大版课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 积分 概念 北师大 课件
- 资源描述:
-
1、1.5 定积分的概念1.5.1 曲边梯形的面积1.5.2 汽车行驶的路程 这些图形的面积该怎样计算?这些图形的面积该怎样计算?例题(阿基米德问题):求由抛物线例题(阿基米德问题):求由抛物线y=xy=x2 2与直线与直线x=1,y=0 x=1,y=0所围成的平面图形的面所围成的平面图形的面积积 Archimedes,约公元前约公元前287年年约公元前约公元前212年年问题问题1 1:我们是怎样计:我们是怎样计算圆的面积的?圆周率算圆的面积的?圆周率是如何确定的?是如何确定的?问题问题2 2:“割圆术割圆术”是是怎样操作的?对我们有怎样操作的?对我们有何启示?何启示?x xy y1.1.了解定积
2、分的基本思想了解定积分的基本思想“以直代曲以直代曲”“”“逼近逼近”的思的思想想.(重点)(重点)2.“2.“以直代曲以直代曲”“”“逼近逼近”的思想的形成与求和符号的思想的形成与求和符号.(难点)(难点)曲边梯形的概念:如图所示,我们把由直线曲边梯形的概念:如图所示,我们把由直线x=a,x=b(ab),y=0 x=a,x=b(ab),y=0和曲线和曲线y=f(x)y=f(x)所围成的图形称所围成的图形称为曲边梯形为曲边梯形 如何求曲边梯如何求曲边梯形的面积?形的面积?abf(a)f(b)y=f(x)xyO对任意一个小曲边梯形,用对任意一个小曲边梯形,用“直边直边”代替代替“曲边曲边”(即在很
3、小范围内以直代曲(即在很小范围内以直代曲)探究点探究点1 曲边梯形的面积曲边梯形的面积 直线直线x x 1 1,y y 0 0及曲线及曲线y y x x2 2所围成的图形(曲边所围成的图形(曲边梯形)面积梯形)面积S S是多少?是多少?为了计算曲边梯形的面积为了计算曲边梯形的面积S S,将它分割成许多小曲边梯形,将它分割成许多小曲边梯形,x yO1方案方案1 1方案方案2 2方案方案3 3y=xy=x2 2解题思想解题思想“细分割、近似和、渐逼近细分割、近似和、渐逼近”下面用第一种方案下面用第一种方案“以直代曲以直代曲”的具体操作过程的具体操作过程(1 1)分割)分割把区间把区间00,11等分
4、成等分成n n个小区间:个小区间:11 2i 1 in1 n0,nn nnnnnii 11 x nnn 过各区间端点作过各区间端点作x x轴的垂线,轴的垂线,从而得到从而得到n n个小曲边梯形,它个小曲边梯形,它们的面积分别记作们的面积分别记作12inS,S,S,S.每个区间长度为每个区间长度为1niiSS(2 2)近似代替近似代替2ii 1i 11Sf()x()nnn(3 3)求和)求和n12nii 1nn2i 1i 122223SSSSS,i-1 1i-11 f()()nnnn1 012(n1)n(i=1,2,n)(i=1,2,n)(4 4)取极限)取极限n n当当分分割割无无限限变变细细
5、,即即x x 0 0(亦亦即即n n +)时时,1 11 11 11 1S S=l li im m1 1-1 1-=3 3n n2 2n n3 31 1即即所所求求曲曲边边梯梯形形的的面面积积为为.3 331(n1)n(2n1)n6111(1)(1)3n2n演示演示观察以下演示,注意当分割加细时,矩观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系形面积的和与曲边梯形面积的关系.观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系矩形面积的和与曲边梯形面积的关系.观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积的
6、和与曲边梯形面积的关系矩形面积的和与曲边梯形面积的关系.观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系矩形面积的和与曲边梯形面积的关系.2 2观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系矩形面积的和与曲边梯形面积的关系.观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系矩形面积的和与曲边梯形面积的关系.观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系矩形面积的和与曲边梯形面积的关系.观察以下演示,注意
7、当分割加细时,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系矩形面积的和与曲边梯形面积的关系.观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系矩形面积的和与曲边梯形面积的关系.观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系矩形面积的和与曲边梯形面积的关系.观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系矩形面积的和与曲边梯形面积的关系.观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系矩
展开阅读全文