第四章筒体结构分析课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第四章筒体结构分析课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四 章筒体 结构 分析 课件
- 资源描述:
-
1、4.1.5 框筒受扭的近似计算框筒受扭的近似计算 两x向腹框架(连同y向相应翼框)中每榀所受层剪力为Vx 两y向腹框架(连同x向相应翼框)中每榀所受层剪力为Vy框筒结构在该楼层所受扭矩为Mz把筒看作由四榀框架组成把筒看作由四榀框架组成框筒结构框筒结构 1212122 2c2 ,(m),(,)(b),yzxyzTxxxxmTyyyymTzzzzmxiyizibVMVb VMVVVVVVVVMMMMV VxayiMx 则有平衡条件 2cV对所有楼层,以矩阵形式表达其中为总层数分别为每榀 方向,方向的腹框架第 层剪力 为i框筒结构第 层的扭矩 框筒受扭的近似计算框筒受扭的近似计算框筒结构框筒结构平衡
2、关系平衡关系 1212,(c)(d)TxxxxmTyyyymxxxyyyxyx yVKVKKKmm 设分别为向的腹框架在框架本身平面方向的位移列阵 则:均为阶方阵,分别为 x,y向腹框的侧向刚度矩阵 框筒受扭的近似计算框筒受扭的近似计算框筒结构框筒结构物理关系物理关系 1222o ,(2(2)zTmixyxyzMicbc KbKMef 另:框筒结构在的作用下产生绕 点(刚心)的竖轴的转角第楼层绕竖轴z的转角 则:有 将e,f代入c,d后再代入b式得 框筒受扭的近似计算框筒受扭的近似计算框筒结构框筒结构几何关系几何关系 12212222 22 22 22 ,xyzxyzxyzzxyxycKbKM
3、cKbKMcKbKKKMFMFKe fc dVV11则转角位移列阵则转角位移列阵令扭转刚度方阵 则或 框筒扭转柔度矩阵将代入得再代入得再按展开平面框架法得各杆件内力 框筒受扭的近似计算框筒受扭的近似计算框筒结构框筒结构 可以作为内单筒单独承受水平荷载实腹筒体;可以作为内单筒单独承受水平荷载实腹筒体;可以和框筒或其它实腹筒共同工作抵抗水平荷载。可以和框筒或其它实腹筒共同工作抵抗水平荷载。但需先解决单个实腹筒在水平荷载下的计算问题但需先解决单个实腹筒在水平荷载下的计算问题.4.2.1 变形特性变形特性 单个实腹筒体可以看作底端固定,顶端自由的单个实腹筒体可以看作底端固定,顶端自由的 竖向悬臂竖向悬
4、臂 开口薄壁杆件开口薄壁杆件 闭口薄壁杆件(以后将介绍)闭口薄壁杆件(以后将介绍)4.2 实腹筒体结构的计算实腹筒体结构的计算筒体结构筒体结构Vy通过通过o点时:平面弯曲问题,点时:平面弯曲问题,可按材料力学方法计算可按材料力学方法计算 实腹筒体受扭的计算实腹筒体受扭的计算o点为点为弯曲中心弯曲中心当当Vy通过通过o点时,点时,筒体只产生弯曲变形筒体只产生弯曲变形 当当Vy不通过不通过o点时,点时,筒体产生筒体产生 弯曲变形弯曲变形 绕绕o点的扭转变形点的扭转变形 o点也称为点也称为扭转中心扭转中心筒体结构筒体结构 当当Vy不通不通 过过o点时:点时:简化简化 等效平移过等效平移过o点点 另加
5、另加Mz:扭转:扭转 自由扭转自由扭转 约束扭转约束扭转实腹筒体受扭的计算实腹筒体受扭的计算弯曲中心弯曲中心筒体结构筒体结构4.2.2 扭转分类扭转分类 当实腹筒体(开口薄壁杆件)受扭时,横截面不当实腹筒体(开口薄壁杆件)受扭时,横截面不再保持为平面再保持为平面 发生翘曲(即出平面的凹凸)发生翘曲(即出平面的凹凸)l自由扭转:自由扭转:如果外扭矩仅施加于筒体(杆件)两如果外扭矩仅施加于筒体(杆件)两端,且两端可以自由翘曲则:端,且两端可以自由翘曲则:各横截面的翘曲相同各横截面的翘曲相同 无纵向线应变无纵向线应变 横截面上无正应力横截面上无正应力 筒体的每一部分也不筒体的每一部分也不会在纵向平面
6、内发生弯曲(自由扭转或纯扭转)会在纵向平面内发生弯曲(自由扭转或纯扭转)实腹筒体受扭的计算实腹筒体受扭的计算筒体结构筒体结构l约束扭转约束扭转:开口薄壁筒体受扭时,若:开口薄壁筒体受扭时,若 筒体截面沿高度变化筒体截面沿高度变化 或或 Mz不限于施加于筒体两端不限于施加于筒体两端 或或 端截面由于支座的约束端截面由于支座的约束则则 截面不能自由翘曲:翘曲受阻截面不能自由翘曲:翘曲受阻 截面截面产生不均匀的正应力产生不均匀的正应力 杆的每一部分在纵杆的每一部分在纵向平面内各自产生弯曲。向平面内各自产生弯曲。实腹筒体受扭的计算实腹筒体受扭的计算筒体结构筒体结构 自由扭转(开口)自由扭转(开口)横截
7、面上的扭转剪应力横截面上的扭转剪应力沿壁厚按直线规律变化沿壁厚按直线规律变化max0 tttztzMIM中线处中线所形成的纵向曲面 (中曲面)内无剪切变形截面边缘处 达最大,且:截面的“纯扭矩”:壁厚4.2.3 自由扭转的剪应力自由扭转的剪应力实腹筒体受扭的计算实腹筒体受扭的计算4.2.4 约束扭转的正应力约束扭转的正应力 可按符拉索夫理论分析计算,该理论的假定 杆件“中面上”无剪应变(为简化计算的假定)实际上,中面上 a:剪应力、剪应变均存在 b:均不大 c:假定的误差可接受31 3ttiiiiiIIhhii:抗扭惯性矩,若截面由若干狭长矩形 组成则:第 个矩形的高度 :第 个矩形截面的宽度
8、(壁厚)框筒受扭的近似计算框筒受扭的近似计算 扭转前后截面在与纵轴垂直的面上扭转前后截面在与纵轴垂直的面上投影不变投影不变 a.开口薄壁杆件的约束扭矩,截面周开口薄壁杆件的约束扭矩,截面周 边存在着变形边存在着变形;实际上实际上 b.此变形对计算结果的影响不大此变形对计算结果的影响不大;c.实际工程中,因楼板的横隔作用,实际工程中,因楼板的横隔作用,影响更小影响更小 实腹筒体受扭的计算实腹筒体受扭的计算筒体结构筒体结构故此假定的误差很小故此假定的误差很小.112 :1 :snnnEEEErdswwrdswwwn 的表达式材料的弹性模量材料的泊松比某点的扇形面积或扇形坐标纵向位移分量数学上:积分
9、常量物理上:弧长起算点 的纵向位移分量实腹筒体受扭的计算实腹筒体受扭的计算筒体结构筒体结构rrS弧Sds 由主扇性坐标的几何由主扇性坐标的几何意义意义:薄壁筒体横截面:薄壁筒体横截面中线与连梁轴线所围成中线与连梁轴线所围成的闭合图形面积的的闭合图形面积的2倍。倍。112 :1 :snnnEEEErdswwrdswwwn 的表达式材料的弹性模量材料的泊松比某点的扇形面积或扇形坐标纵向位移分量数学上:积分常量物理上:弧长起算点 的纵向位移分量一阶一阶实腹筒体受扭的计算实腹筒体受扭的计算筒体结构筒体结构:vvrzBI切向位移分量 扭转角对纵坐标 的二阶导数计算公式是一个自相平衡的力系,22:iiiA
10、IdAdsI截面周边由直线段组成截面的主扇形惯性矩 截面上某点的扇形坐标实腹筒体受扭的计算实腹筒体受扭的计算筒体结构筒体结构4.2.5 约束扭转正应力约束扭转正应力 所对应的内力所对应的内力2:AffBBdAMMhBkN m 双力矩定义大小相等两翼缘各产生方向相反令截面上的双力矩由引起,量纲:实腹筒体受扭的计算实腹筒体受扭的计算筒体结构筒体结构双力矩的概念双力矩的概念4.2.6 4.2.6 弯曲扭转的剪应力弯曲扭转的剪应力 一方面:使杆件每一部分各自在纵向平面内弯曲,并产生约束扭转正应力另一方面:在横截面还产生弯曲扭转剪应力:,max tftttMIMGI纯扭转(前已述)约束扭转同时产生扭转角
11、:弯曲扭转实腹筒体受扭的计算实腹筒体受扭的计算筒体结构筒体结构1 oZtAdBMMMMdzEdA某横截面上:壁厚 方向:沿截面周边切向 大小:沿壁厚不变(薄壁)oMtdsoMZofM纯扭转纯扭转弯曲扭转弯曲扭转实腹筒体受扭的计算实腹筒体受扭的计算 0 0 0BMz 固定端边界条件 0转角曲率根据另一端的边界条件确定未知 整个筒体所受的外力对z轴取矩为0的平衡确定条件实腹筒体受扭的计算实腹筒体受扭的计算筒体结构筒体结构4.2.7 开口薄壁筒体约束扭转的边界条件开口薄壁筒体约束扭转的边界条件000 0:0 0 0 wZBBBM 自由端边界条件:未知该端无外力矩作用时该端有外力矩作用时扭转固定、弯曲
12、简支的边界条件:0已知未知已知未知实腹筒体受扭的计算实腹筒体受扭的计算筒体结构筒体结构 高层建筑中的薄壁筒体结构,一般开口位置在高层建筑中的薄壁筒体结构,一般开口位置在各层楼盖的标高处设有连续梁(即各楼层形成的门各层楼盖的标高处设有连续梁(即各楼层形成的门窗洞)窗洞)构成了带连梁的开口薄壁筒体结构:构成了带连梁的开口薄壁筒体结构:连梁的存在连梁的存在 、加强了薄壁筒体结构、加强了薄壁筒体结构 抵抗界面翘曲变形的能力抵抗界面翘曲变形的能力 、增加了筒体抵抗约束扭转、增加了筒体抵抗约束扭转 的刚度的刚度实腹筒体受扭的计算实腹筒体受扭的计算筒体结构筒体结构4.3连梁和楼板对开口薄壁筒体约束扭转的影响
13、连梁和楼板对开口薄壁筒体约束扭转的影响薄壁筒体横截面中线:一般由直线组成薄壁筒体横截面中线:一般由直线组成srds薄壁筒体横截面中及薄壁筒体横截面中及洞口附近的部分主扇洞口附近的部分主扇形坐标图形坐标图S为扭转中心为扭转中心 横截面中线为直线时,横截面中线为直线时,图也为直线所组成图也为直线所组成xy扭转中心Sfaa连梁ScdlSabbcm,ncbrdde实腹筒体受扭的计算实腹筒体受扭的计算筒体结构筒体结构 由于截面翘曲 变形产生的纵向位ab和 cd段 连梁变形(由引起)nnwrdsww 翘曲产生的纵向位移因某点纵向位移分量:a、b、c、d四点由于横截面翘曲所产生的相对纵向位移(wn=0),/
14、aabbccccwwwwddz 式中 为转角 四竖向坐标的导数abwawbl/2bcdwcwdl/2Zc实腹筒体受扭的计算实腹筒体受扭的计算对截面中线为直线的ab与cd:为常量,因此(,)iia b c di为 点的主扇性坐标bababababcdcdccdcdwwSSwwSS bc则连梁两端的转角与洞口边缘薄壁截面的转角相等则连梁两端的转角与洞口边缘薄壁截面的转角相等 cbbcgibc因此有因此有实腹筒体受扭的计算实腹筒体受扭的计算连梁变形曲线的切线与连梁跨中竖线交与g、i 两切线相互平行(间距离相等),竖线位移:331212():bbbcbbbEIEIVlllI 连梁考虑剪切变形的折算惯性
15、矩bc22()bcbcbcbcccllwwwwll 由筒体受约束扭转使连梁产生的剪力V为:cbbcgibc 切开m、n截面,将m、n点 的V均等效移至b、c处,则2281 bbbb bbcIIIA l连梁反弯点在梁中点bcbc点、V、M点、V、M()2bclMMV逆时针vvvvMcMbcnmbcbbcgibc实腹筒体受扭的计算实腹筒体受扭的计算连梁对筒体的约束作用等效于在点连梁对筒体的约束作用等效于在点b b和和c c分别作用有分别作用有 V V(向上)(向上)M Mb b和和V(V(向下向下)、M MC C,有有:作用在截面上点作用在截面上点b b的向上力的向上力V V,引起截面产生,引起截
16、面产生 (约束)双力矩(约束)双力矩B B1 1:作用在截面上点作用在截面上点c c的向下力的向下力V V所引起筒体截面所引起筒体截面产生(约束)双力矩产生(约束)双力矩B B22:在截面在截面b b点作用的集中力偶点作用的集中力偶M Mb b可用一对等值、可用一对等值、反向、相距为反向、相距为dsds的力的力M Mb b/ds/ds来代替。这一对集中来代替。这一对集中力所引起的(约束)双力矩为:力所引起的(约束)双力矩为:B B11=+V=+Vb bB B22=+V=+Vc c 实腹筒体受扭的计算实腹筒体受扭的计算筒体结构筒体结构结结 论论同理,作用与同理,作用与c c点上的力偶点上的力偶M
展开阅读全文