图书馆推荐系统建置以淡江图书馆资料为例淡江大学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《图书馆推荐系统建置以淡江图书馆资料为例淡江大学课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 图书馆 推荐 系统 建置 资料 淡江大学 课件
- 资源描述:
-
1、指導教授:魏世杰研究生:陳慶宇1+緒論+文獻探討+研究方法+實驗及評估+結論和未來目標2+圖書館擁有大量資料+搜尋模式單一,只能使用關鍵詞+若遇書名用詞或語言不同,搜尋結果可能遺漏使用者所需+使用推薦系統改善133常用技術7有:+協同過濾(Collabrative Filtering):社群力量+內容為本(Content-based):文字比對+知識為本(Knowledge-based):屬性篩選4+以淡江圖書借閱紀錄及分類號為協同及內容推薦基礎+考量個資問題 當無法取得借閱者身份提出物推薦物方法 當可取得借閱者身份提出物推薦物內嵌在人推薦物方法下之做法+結果與Mahout協同推薦法4互相比較
2、5+協同推薦(Collabrative Filtering)用戶為本(User-based)物品為本(Item-based)模型為本(Model-based)+內容為本(Content-based)+知識為本(Knowledge-based)6+採物品為本推薦,觀察購物車已有商品進行推薦+推薦過程依賴事先建好的相似物品表 相似物品表建立演算法如下2:7/計算型錄中每樣物品I1和其餘物品I2相似度For each item I1 in product catalog /分別統計所有物品和I1同時購買之次數 For each customer C who purchased I1For each
3、item I2 purchased by customer C Record that a customer purchased I1 and I2/利用和I1同時購買之次數高低計算所有物品和I1相似度For each item I2Compute the similarity between I1 and I2+杜威十進圖書分類法14 美國國會圖書館圖書分類法15例如:GV943.49.B5 1998 中國圖書分類法11例如:857.7/8326 8+Mahout 4為一JAVA寫成具有運算可分散能力(scalable)的機器學習套件,能和 Apache Hadoop 分散式架構相結合,有效
4、使用分散式系統來實現高性能計算。提供協同推薦、分類和分群演算法協同推薦包含用戶為本、物品為本和斜率1推薦法9/計算用戶u尚未評價過的所有物品i之可能評價,回傳前面名次物品for every item i that u has no preference for yet/計算其餘用戶v對物品i之評價,依照v,u相似度s加權,結合到u對i之評價for every other user v that has a preference for icompute a similarity s between u and vincorporate vs preference for i,weighted
5、by s,into running average return the top items,ranked by weighted averageGenericUserBasedRecommender類別410GenericItemBasedRecommender類別4/計算用戶u尚未評價過的所有物品i之可能評價,回傳前面名次物品for every item i that u has no preference for yet/計算用戶u對其餘物品j之評價,依照i,j相似度s加權,結合到u對i之評價for every item j that u has a preference forcomp
6、ute a similarity s between i and jadd us preference for j,weighted by s,to running average return the top items,ranked by weighted average11SlopeOneRecommender類別4/計算用戶u尚未評價過的所有物品j之可能評價,回傳前面名次物品for every item i the user u expresses no preference for/計算用戶u對其餘物品j之評價,依照i,j平均喜好差d,結合到u對i之評價 for every item
7、 j that user u expresses a preference forfind the average preference difference between j and iadd this diff to us preference value for jadd this to a running averagereturn the top items,ranked by these averages12+不可取得借閱者身份時 給定書代碼bid,推薦書本個數n,輸出是一群和bid相關的書集合bid_set=bid1,bid2,.,bidn。目標是找出一般使用者在借過bid之後
8、將來最可能借的書集合+可取得借閱者身份時 給定用戶代碼uid,推薦書本個數n,輸出是一群和uid相關的書集合bid_set=bid1,bid2,.,bidn。目標是找出該使用者將來最可能借的書集合13第一層是從給定的書bid,找到同樣有借過此書的使用者u u,第二層是從使用者u u找出過去所有借過的書b b,最後將所有書集合做成聯集bid_msetbid_mset,回傳重複次數最多的前n n名集合bid_setbid_set,當作推薦for every user u who has borrowed book bidfor every book b that user u has borrow
展开阅读全文